tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None) shape:一个一维整数张量或Python数组.代表张量的形状.mean:数据类型为dtype的张量值或Python值.是正态分布的均值.stddev:数据类型为dtype的张量值或Python值.是正态分布的标准差dtype: 输出的数据类型.seed:一个Python整数.是随机种…
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)</span> . shape:一个一维整数张量或Python数组.代表张量的形状. mean:数据类型为dtype的张量值或Python值.是正态分布的均值. std…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter learning_rate…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter learning_rate…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tf.random_normal 函数 random_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ops.py. 请参阅指南:生成常量,序列和随机值>随机张量 从正态分布中输出随机值. 参数: shape:一维整数张量或 Python 数组.输出张量的形状. mean:dtype 类型的0-D张量或 Python 值.正…
tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明.官方给的api reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) input_tensor:表示输入 axis:表示在那个维度进行sum操作. keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度. reduction_indices:…
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值. tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) shape: 输出张量的形状,必选    mean: 正态分布的均值,默认为0    stddev: 正态分布的标准差,默认为1.0    dtype: 输出的类型,默认为tf.float32    seed: 随机数种子,是一个整数,当…
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值. tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) shape: 输出张量的形状,必选 mean: 正态分布的均值,默认为0 stddev: 正态分布的标准差,默认为1.0 dtype: 输出的类型,默认为tf.float32 seed: 随机数种子,是一个整数,当设置之后,每次生成的随机…
1.tf.truncated_normal使用方法 tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值. 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择. 在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%. 横轴区间(μ-2σ,μ+2σ)内的面积为95.4499…