1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python grpc 的 protobuf 编译工具: $ pip install grpcio-tools 2.在serving目录运行脚本,生成*_pb2.py文件 # run at root of tensorflow_serving repo TARGET_DIR="$1" python -…
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性: 支持模型版本控制和回滚 支持并发,实现高吞吐量 开箱即用,并且可定制化 支持多模型服务 支持批处理 支持热更新 支持分布式模型 易于使用的inference api 为gRPC expose port 8500,为…
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving…
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https://github.com/tensorflow/serving 进入到serving目录下的tensorflow运行./configure,并安装步骤完成(需将 2问题解决的的步骤全操作完后执行安装步骤) 1.2.编译example代码 bazel build tensorflow_serving…
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1].DeepCross Network[2].DeepFM[3].xDeepFM[4],美团很多篇深度学习博客也做了详细的介绍.但是,当离线模型需要上线时,就会遇见各种新的问题: 离线模型性能能否满足线上要求.模型预估如何镶入到原有工程系统等等.只有准确的理解深度学习框架,才能更好地将深度学习部署到线…
Tensorflow serving提供了部署tensorflow生成的模型给线上服务的方法,包括模型的export,load等等. 安装参考这个 https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/setup.md 但是由于被qiang的问题 (googlesource无法访问) https://github.com/tensorflow/serving/issues/6 需要修改一下 WORKS…
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
最近在用Docker搭建TensorFlow Serving, 在查阅了官方资料后,发现其文档内有不少冗余的步骤,便一步步排查,终于找到了更简单的Docker镜像构建方法.这里有两种方式: 版本一: FROM ubuntu:18.04 # Install general packages RUN apt-get update && apt-get install -y wget && \ apt-get clean && \ rm -rf /var/lib/…
最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学到的也比较多,有错欢迎揪出, minist_saved_model.py 是tensorflow的第一个例子,里面有很多serving的知识,还不了解,现在看.下面是它的入口函数,然后直接跳转到main if __name__ == '__main__': tf.app.run() 在main函数里…
yaml是一个数据序列化的标准,适用于所有开发语言,最大的特点是可读性好. yaml的一个主要应用方向就是编写配置文件,有非常多的系统和框架采用yaml进行配置. yaml有以下基本规则: 1.大小写敏感 2.使用缩进表示层级关系 3.禁止使用tab缩进,只能使用空格键 4.缩进长度没有限制,只要元素对齐就表示这些元素属于一个层级. 5.使用#表示注释 6.字符串可以不用引号标注 三种数据结构 1. map,散列表 使用冒号:表示键值对,同一缩进的所有键值对属于一个map # yaml表示 ag…