机器学习.深度学习以及人工智能正在快速演进 机器学习.深度学习和人工智能(ML.DL和AI)是彼此相关的概念,他们正在改变不知多少行业,改变其自身管理模式,同时改变做出决策的方式.显然,ML.DL和AI对于各行各业都非常重要,却也十分复杂,同时非常迅速发展着. 人工智能(Artificial Intelligence,AI)AI用来形容涉及高级计算智能的最宽泛的说法.1956年,在达特茅斯人工智能大会上,该技术被描述为:“原则上,学习的每一个方面或任何其他智能特征都可以精确描述,并且一台机器可以…
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感…
从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. 参考:机器学习&深度学习算法及代码实现 学习路线第一步:数学主要为微积分.概率统计.矩阵.凸优化 第二步:数据结构/算法常见经典数据结构(比如字符串.数组.链表.树.图等).算法(比如查找.排序)同时,辅助刷leetcode,提高编码coding能力 第三步:Python数据分析掌握Python这门…
机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2) <机器学习&&深度学习> 视频课程资源…
参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代码实现–决策树 决策树学习笔记(Decision Tree) 引自:Python3<机器学习实战>学习笔记(二):决策树基础篇之让我们从相亲说起 github:https://github.com/Jack-Cherish/Machine-Learning/tree/master/Decision…
基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别. object detection技术的演进:RCNN->SppNET->F…
资源介绍 链接:http://pan.baidu.com/s/1kV6nWJP 密码:ryfd     链接:http://pan.baidu.com/s/1dEZWlP3 密码:y82m 更多资源 请加入  机器学习交流qq群:342942219 源自: 最全的机器学习&深度学习入门视频课程集 - CSDN博客 https://blog.csdn.net/ldily110/article/details/53087437…
2017年3月22日下午,Facebook人工智能研究院院长.纽约大学终身教授Yann LeCun在清华大学大礼堂为校内师生以及慕名而来的业内人士呈现了一场主题为<深度学习与人工智能的未来(Deep Learning and the Future of AI)>的精彩公开课. 随着AlphaGo事件的不断发酵,神经网络成为时下人工智能产学领域万众瞩目的研究焦点,也成为普罗大众的热门话题.事实上,神经网络作为一种算法模型,很早就已经被广泛关注和研究,也曾长时间内陷入发展突破的低潮期.不过,在以G…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工智能有哪些方向? 1.1 机器学习综述 1.2 深度学习综述 1.3 强化学习综述 1.4 知识图谱综述 1.5 对接其他前沿技术 2. 分享个人对于新手入门学习路线和学习资源的推荐 2.1 python编程学习路线及笔记 2.2 机器学习专题学习路线及笔记 2.3 深度学习专题学习路线及笔记 2.…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…