Python实现KNN算法及手写程序识别】的更多相关文章

1.Python实现KNN算法 输入:inX:与现有数据集(1xN)进行比较的向量   dataSet:已知向量的大小m数据集(NxM)   个标签:数据集标签(1xM矢量)   k:用于比较的邻居数(应为奇数)输出:最受欢迎的类标签(归类问题) # -*- coding: utf-8 -*- """ Created on Sun Apr 16 23:01:54 2017 @author: SimonsZhao kNN: k Nearest Neighbors Input:…
基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as plt # 显示灰度图 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 加载数据集图片数据 digits = cv2.imread('./image/digits.png',0) print(digits.shape) plt_sh…
import numpy as np import matplotlib .pyplot as plt import pandas as pd from sklearn.neighbors import KNeighborsClassifier # 加载数据 img_arr = plt.imread('./data/8/8_88.bmp') plt.imshow(img_arr) <matplotlib.image.AxesImage at 0x1786b073780> img_arr.sha…
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积层2 (5)搭建全连接层3 (6)搭建输出层 2.2 训练和评估模型 三.结果 3.1 训练过程 3.2 测试过程 四.讨论与结论 一.背景介绍 1.1 卷积神经网络 近年来,深度学习的概念非常火热.深度学习的概念最早由Hinton等人在2006年提出.基于深度置信网络(DBN),提出非监督贪心逐层…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
人工智能   人工智能(Artificial Intelligence,简称AI)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展.由于人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广 . 人工智能的核心问题包括建构能够跟人类似甚至超越人类的推理.知识.学习.交流.感知.使用工具和操控机械的能力等,当前人工智能已经有了初步成果,甚至在一些影像识别.语言分析.棋类游戏等等单方面的能力达到了超越…
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有200个样本. ♦每个样本保持在一个txt文件中. ♦手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下: 数据集压缩包解压后有两个目录:(将这两个目录文件夹拷贝的项目路径下E:/KNNCase/digits/) ♦目录trainingDigits…
首先看看一些关键词:K-NN算法,训练集,测试集,特征(空间),标签 举实验楼中的样例,通俗的讲讲K-NN算法:电影有两个分类(标签)-动作片-爱情片.两个特征--打斗场面--亲吻画面. 将那些数字和分类用图像表示大概如下: 两个红圆圈分别代表两种电影,他们包含了表中的数据,求解中间蓝色方框(就一个点(X,Y))属于哪一类,k-nn算法的解决方式是计算方框到两圆的距离,离谁近就属于谁.再具体点就是通过特征值来计算,假设接吻镜头次数=x,打斗=y,那么根据计算方式 d = ((X - x)^2 +…
from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances =…
import mnist_loader from network3 import Network from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer training_data, validation_data, test_data = mnist_loader.load_data_wrapper() mini_batch_size = 10 #NN算法:sigmoid函数:准确率97% net = Netw…