一.引言 对于一个学习问题,可以假设很多不同的模型,我们要做的是根据某一标准选出最好的模型.例如,在多项式回归中,对于我们的假设模型,我们最要紧的是决定 k 到底取多少合适,能不能有一种方法可以自动选择出可以在偏差和方差(关于偏差和方差的理论,参考: 学习理论 )之间做出均衡的模型? 为了具体讨论,本文中假设有一个有限的模型集,我们就是要从这个模型集中选出一个最好的模型. 二. 交叉验证 给定训练集, 采用经验风险最小化的方法训练模型,于是很容易想到的就是,把模型集中训练误差最小的模型选出来,就…