UOJ #390. 【UNR #3】百鸽笼】的更多相关文章

UOJ #390. [UNR #3]百鸽笼 题目链接 看这道题之前先看一道相似的题目 [PKUWC2018]猎人杀. 考虑类似的容斥: 我们不妨设处理\(1\)的概率. 我们令集合\(T\)中的所有鸽笼都在\(1\)变空之前不为空的,其它的鸽笼随便.要做到这一点,我们只需要令每个\(T\)集合中的鸽笼容量\(--\)就行了.然后我们用背包背出所有序列的方案数(不包括\(1\)),然后在将\(1\)插入序列中.插入时,将\(w_i-1\)个随便插入,然后再将一个放在序列末尾. 具体实现时,我们可以…
[UOJ#390][UNR#3]百鸽笼(动态规划,容斥) 题面 UOJ 题解 发现这就是题解里说的:"火山喷发概率问题"(大雾 考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼数量,因为概率会随着你空的鸽笼的数量而变化. 我们可以把这个问题转变为给一个长度为\(N\)的序列填数的问题. 直接算似乎不是很好算(因为直接算是要钦定在最后,那么其他的东西放满之后每个位置被选择的概率会被改变),我们把最后一个被填满的恰好是\(i\),变成至少有一个集合\(S\)在\(i\)后面被填满. 因…
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\)时,考虑枚举第一个\(j\)出现在哪里.设最左边的\(j\)在\(p\)位置,那么会对左端点在\([\max(1,p-k+1),\ \min(p,i-k+1)]\)的每个\(k\)区间造成\(w[j]\)的贡献,也就是\(w[j]^{len}\).\(p\)左边没出现过\(j\),贡献是\(f[p-…
题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<q…
题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品按s排序就可以直接判断后一项. 我们发现当要判断的区间的长度\(\leq m\)时,区间内的所有数都要选(后一项都确定了). 当区间长度\(>m\)时,自然是选\(v\)最大的\(m\)个.可以用链表把\(v\)最小的逐个删去. 发现删掉\(x\)的话我们只需要用\(x\)附近\(m\)个数更新答案…
预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气(也就是很菜,变成了自己瞧不起的人...) 思路很假,但他很真(雾)... 暴力枚举矩形,暴力删除这个矩形,暴力的找下一个矩形.....然后六十??? 唯一提高正确性的地方就在枚举矩形时一个点正序,另一个倒序.... 1 #include<cstdio> 2 #include<bitset&…
因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数   组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008]木棍分割 第一问二分,第二问记$dp[i][j]$为前$i$根砍$j$刀的方案,那么它可以由所有$sum[i]-sum[k]<=ans1$的$k$转移而来,用滚动数组优化空间,用队列的形式优化转移 P1410 子序列 贪心能过(数据水).dp的话,考虑$f[i][j]$表示前面$i$个数的最长上升…
学考+OJ改名祭 T1 邻面合并 解题思路 状压 DP ...(于是贪心竟然有 60pts 的高分?? code) 状态设计的就非常妙了,如果状态是 1 就表示是一个分割点也就是一个矩形的右边界. 那么对于一个合法的状态需要满足:原矩阵中是 0 的不可以是分割点,并且对于原矩阵中的 1,而言如果不是分割点那么它到前面最近的分割点之间就不可以有 0 . 然后考虑对于不同的状态进行合并,如果上一行的这个位置不是分割点而这一行是显然就需要新开一个矩形. 同样的道理,如果两个矩形的分割点一样但是长度不同…
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[i][j]\)表示长度为\(i\),且最大值不超过\(j\)的所有方案之和. 因为最大值有多个,所以我们钦定每次选择最靠右的那个,所以转移就是: \[f[i][j]=f[i][j-1]+\sum_{k=1}^if[k-1][j]*f[i-k][j-1]*w[j]^{c}\] 即钦定为最靠右的那个最大…
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) FWT之后,一定只有-1,3 而FWT的和等于和的FWT 所以做和,然后FWT一下 列方程就可以得到每一位的-1和3的个数了 而对于一些多项式,分别FWT.IFWT和FWT后乘起来再IFWT是一样的 我们已经快速幂得到n个多项式FWT的乘积了 再做一次IFWT即可 还是想到FWT集体处理,必然要注意顺…