RCNN是从图像中检测物体位置的方法,严格来讲不属于三维计算机视觉.但是这种方法却又非常非常重要,对三维物体的检测非常有启发,所以在这里做个总结. 1.RCNN - the original idea —— <Rich feature hierarchies for accurate object detection and semantic segmentation> 这篇文章提出了用CNN网络来对物体进行检测的思路. Q: a. CNN网络中存在卷积层和池化层,每次池化都会弱化物体的位置信…
机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态.图像处理算法借助Deep Learning 的东风已经在图像的物体标记领域耍的飞起了.而从三维场景中提取物体还有待研究.目前已有的思路是先提取关键点,再使用各种局部特征描述子对关键点进行描述,最后与待检测物体进行比对,得到点-点的匹配.个别文章在之后还采取了ICP对匹配结果进行优化. 对于缺乏表面纹理信息,或局部曲率变化很小,或点云本身就非常稀疏的物体,采用局部特征描述子很难有效的提取到匹配对.所以就有了所谓基于Point Pair 的…
博客转载自:http://www.cnblogs.com/ironstark/p/6046411.html RCNN是从图像中检测物体位置的方法,严格来讲不属于三维计算机视觉.但是这种方法却又非常非常重要,对三维物体的检测非常有启发,所以在这里做个总结. 1.RCNN - the original idea "Rich feature hierarchies for accurate object detection and semantic segmentation"这篇文章提出了用…
关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有讨论都在关键点检测上点到为止.NARF 算法实际上可以分成两个部分,第一个部分是关键点提取,第二个部分是关键点信息描述,本文仅涉及第一个部分. 在文章开始之前,有非常重要的一点要说明,点云中任意一点,都有一定概率作为关键点.关键点也是来自原始点云中的一个元素.和图像的边缘提取或者关键点检测算法追求n…
关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foreground: 上述三个概念在信息学中几乎占据了统治地位.比如1维的函数(信号),有各种手段去得到某个所谓的关键点,有极值点,拐点...二维的图像,特征点提取算法是标定算法的核心(harris),边缘提取算法更是备受瞩目(canny,LOG.....),当然,对二维的图像也有区域所谓的前景分割算法用于提取…
分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标连成一条线,自然就区分开了两个地区.也就是说,除了之前提到的基于采样一致的分割方式以外,应该还存在基于邻近搜索的分割方式.通过对比某点和其最近一点的某些特征,来实现点云的分割.图像所能提供的分割信息仅是灰度或RGB向量,而三维点云却能够提供更多的信息.故点云在分割上的优势是图像所无法比拟的(重要的事情要说三遍…
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型. 卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型.用卷积网络识别MNIST数据集. from keras import layers from keras import models mode…
博客转载自:http://www.cnblogs.com/ironstark/p/5971976.html 机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态.图像处理算法借助Deep Learning 的东风已经在图像的物体标记领域耍的飞起了.而从三维场景中提取物体还有待研究.目前已有的思路是先提取关键点,再使用各种局部特征描述子对关键点进行描述,最后与待检测物体进行比对,得到点-点的匹配.个别文章在之后还采取了ICP对匹配结果进行优化. 对于缺乏表面纹理信息,或局部曲率变化很小,或点…
计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer vision Bag-of-words 模型 之前教研室有个小伙伴在做文本方面的东西,经常提及词袋模型,只知道是文本表示的一种,可是最近看的关于CV的论文中也出现BoW模型,就很好奇BoW到底是个什么东西. BoW起始可以理解为一种直方图统计,开始是用于自然语言处理和信息检索中的一种简单的文档表示方法. 和…
三维场景中对于渲染效果不是很精致的物体可以使用BillBoard技术实现,使用该技术需要将物体实时朝向摄像机,即计算billboard的旋转矩阵M. 首先根据摄像机位置cameraPos和billBoard中心点的坐标centerPos,计算出向量look = centerPos - cameraPos; 然后计算bilboard的向量right = look * cameraUP; 最后计算billboard的向量up = right * look; 最终得到M = mat(right,up,…