决策单调性优化dp】的更多相关文章

遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 数据范围 洛咕上也没给,我能怎么办啊 非正解做法一:暴力 应该都会吧,\(O(n^2)\)枚举.洛谷上貌似40pts. 非正解做法二:…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的队列来维护,表示在(l,r)(l,r)(l,r)这个区间当前的决策都是ididid,然后在每次求决策点的时候弹一下队头,求出当前解之后我们更新一下队尾就行了. 代码: #include<bits/stdc++.h> #define N 100005 #define ld long double u…
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由于根号函数斜率递减,所以i决策的贡献的增长速度必定比j快. 于是使用基础的决策单调性优化即可. 注意两个问题,一是DP函数要存实数而不能存整数,因为先取整会丢失在后面的判断中需要的信息.二是记录决策作用区间的时候左端点要实时更新,即下面的p[st].l++,否则在二分时会出现错误. #include<c…
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sample Input 6 5 3 2 4 2 4 Sample Output 2 3…
决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队列 : 在保证插入和查询的x坐标均具有单调性时可以使用 2.单调栈+二分:保证插入有单调性,不保证查询有单调性 3.分治+ 1 或 2:在每次分治时将\([l,mid]\)这段区间排序后插入,然后更新右区间\([mid+1,r]\)的答案 二.分治.单调队列维护有单调性的转移 (甚至还有分治套分治)…
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我们把编号在[1,n]的叫做正确节点,[n+1,m]的叫做错误节点.一个叶子,如果是正 确节点则为正确叶子,否则称为错误叶子.莎缇拉要帮助昴到达贤者之塔,因此现在面临着存档位置设定的问题. 为了让昴成长为英雄,因此一共只有p次存档的机会,其中1和n必须存档.被莎缇拉设置为要存档的节点称为存档 位置.当…
传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L+i-1][L,L+i−1]的数有jjj次报警机会所需的最小代价. 那么有: f[i][j]=minf[i][j]=minf[i][j]=min{max(f[k][j],f[i−k][j−1]+1)max(f[k][j],f[i-k][j-1]+1)max(f[k][j],f[i−k][j−1]+1…
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times 200\) 的数组 \(d_{i,j}\) 表示从 \((l,i)\) 到 \((r,j)\) 的最短路,合并暴力用类似 floyd 的方式进行转移,这样暴力时间复杂度是 \(RC^3+mC^2\log R+q\),空间复杂度 \(RC^2\),其中 \(m\) 为修改次数,一脸无法通过,而且 T…
update in 2019.1.21 优化了一下文中年代久远的代码 的格式…… 什么是决策单调性? 在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888..... 即不可能会出现后面点的决策点小于前面点的决策点这种情况. 那么这个性质应该如何使用呢? 1,二分. 考虑到决策点单调递增,因此我们考虑用单调队列存下当前的决策选取情况. 单调队列中存的量会带3个信息:这是哪个决策点,这个决策点会给哪个区间的点产生贡献(这是一个区间,所以算2个信息) 相当…
决策单调性: 对于一些dp方程,经过一系列的猜想和证明,可以得出,所有取的最优解的转移点(即决策点)位置是单调递增的. 即:假设f[i]=min(f[j]+b[j]) (j<i) 并且,对于任意f[i]的决策点g[i],总有f[i+1]的决策点g[i+1]>=g[i](或者<=g[i]) 那么,这个方程就具备决策单调性. 这个有什么用吗? 不懂具体优化方法的话确实也没有什么用.可能还是n^2的.只不过范围可能少了一些. 一 经典入门例题: Description: [POI2011]Li…
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(dp_{j,k}+calc(j+1,i))\) 然后看看怎么优化 证明一下这个DP的决策单调性: trz说可以冥想一下是对的就可以 所以我就不证了 (其实就是决策点向左移动一定不会更优) 然后就分治记录当前的处理区间和决策区间就可以啦 //Author: dream_maker #include<bi…
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1)));$ 其中f[i]代表到了第i个句子的最小答案 qpow用于处理^p sum为前缀和 (同时为了处理句子之间的空格问题,我们在统计前缀和的时候就默认在句子后面加一个空格, 然后在计算的时候,由于每一行只有最后一个不用加空格,直接减掉这个多加的空格即可获得正确长度) 首先我们可以打表发现是满足决策单调性…
用途 废话,当然是在DP式子满足某些性质的时候来优化复杂度-- 定义 对于\(j\)往大于\(j\)的\(i\)转移,可以表示成一个关于\(i\)的函数\(f_j(i)\),也就是\(dp_i=\max/\min\{f_j(i)\}\). 若是取\(\max\),并且在某一个地方\(f_j(i)\)从下面跑到了\(f_k(i)\)的上面(如果加入\(f_j(i)\)这个函数时本来就在\(f_k(i)\)的上面那么不算),就称之为\(j\)取代了\(k\).取\(\min\)同理. 如果满足决策单…
小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到书架上后,小Q这才突然意识到它们是乱序的,他只好把每一层的书分别按照编号 从小到大排序.排序每次可以在1单位时间内交换同一层上两本相邻的书. 请写一个程序,帮助小Q计算如何划分这k段,且如何交换这些书,使得总交换次数最少. Input 第一行包含两个正整数n; k(1≤n≤40000;1≤k≤min…
一般的式子都是 $f_i = max\{g_j + w_{(i,j)}\}$ 然后这个 $w$ 满足决策单调性,也就是对于任意 $i < j$ ,$best_i \leq best_j$ 这样就会有两种优化方式 1.$w_{(i,j)}$ 可以快速求 例如:NOI 2009 诗人小 G 题里给了你 $L,P$ 和单调递增的 $s$ 数组,然后 $f_i = min \{ f_j + |s_i-s_j-L-1|^P \} \space (j < i)$ 可以发现以一个点为最优决策的点是一段区间…
Description 对于一个区间集合 {A1,A2--Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值 S=|A1∪A2∪--AK|*|A1∩A2--∩Ak| 即它们的交区间的长度乘上它们并区间的长度. 显然,如果这些区间没有交集则权值为0. Your Task 给定你若干互不相等的区间,选出若干区间使其权值最大. Input 第一行n表示区间的个数 接下来n行每行两个整数l r描述一个区间[l,r] Output 在一行中输出最大权值 Sample Input 4 1 6 4 8…
LINK:holiday 考虑第一个subtask. 容易想到n^2暴力枚举之后再暴力计算答案. 第二个subtask 暴力枚举终点可以利用主席树快速统计答案. 第三个subtask 暴力枚举两端利用主席树计算贡献. 最后一个 subtask. 容易想到还是固定左端点来不断的寻找右端点. 不过很遗憾这最多只能做到\(n^2logn\) 需要从其他的角度入手 感觉前面几个subtask一直在迷惑选手. 可以从天数下手 左边多少天右边多少天. 显然 需要预处理出\(f1_i,f2_i\)分别表示从起…
LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他一定成立了 然后网上有神仙用四边形不等式证明了这个东西LINK 我就懒得不会证明了 然后考虑用一个双向的队列维护出每个决策点对应的单调区间 然后保证所有区间一定是连续的 就构成了所有dp的转移区间 其实和bzoj2216非常像 代码都差不多,直接维护就可以了 最后上DP式子: dp[i] = dp[…
LINK 懒得搬题面 简要题意:n个物品,每个物品有一个价格和一个吸引力,问你对于\(i \in [1,k]\),花费i的价格能得到的最大吸引力 其中价格的范围很小,在\([1,300]\)范围内 思路 首先想到一个dp \(dp_{i,j}\)表示用对于价格小于等于i的物品花费j的价格能得到的最大吸引力 然后对于相等的价格的物品,有一个贪心的的思想就是个数确定的时候选取最大吸引力的几个 这个可以前缀和预处理出来 然后考虑对于价格相等的时候 如果对于\(dp_{w,p}的决策点i < j\),存…
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #include<algorithm> #include<cstring> #define rep(i,l,r) for (int i=(l); i<=(r); i++) typedef long double ll; using namespace std; ; const ll MAX…
题目链接 The Bakery 题目大意:目标是把$n$个数分成$k$组,每个组的值为这个组内不同的数的个数,求$k$个组的值的和的最大值. 题目分析: 这道题我的解法可能和大众解法不太一样……我用主席树求$ask(l, r)$——$l$到$r$之间有多少个不同的数. 然后就是$DP$了. 这道题的数据规模是 $n <= 35000$, $k <= 50$ 首先直接$DP$的做法还是比较简单的.代码如下. 其中$f[i][j]$为前$i$个数分成$j$组可以得到的最大的和 rep(i, 1,…
题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维护呢 我们计算s[t-2]超过s[t-1]的时间t1,s[t-1]超过i的时间t2,如果t1<t2就说明了s[t-1]没有用了 另外再更新的时候我们算一下相邻两个哪个比较有用,要是前面哪个就弹栈 解法2: f[i]=max(f[j−1]+a[j]×(s[i]−s[j]+1)^2) 我们先尝试一下一般…
以[BZOJ2687]交与并为例给出代码. #include <bits/stdc++.h> #define rin(i,a,b) for(register int i=(a);i<=(b);++i) #define irin(i,a,b) for(register int i=(a);i>=(b);--i) #define trav(i,a) for(register int i=head[a];i;i=e[i].nxt) #define Size(a) (int)a.size(…
LINK:珠宝 去年在某个oj上写过这道题 当时懵懂无知wa的不省人事 终于发现这个东西原来是有决策单调性的. 可以发现是一个01背包 但是过不了 冷静分析 01背包的复杂度有下界 如果过不了说明必然存在某种特殊的条件. 果然 物品的代价<=300. 一个贪心对于代价相同的物品显然可以优先选取最大的 我们把代价相同的物品给压在一起. 可以发现 这类似于分组背包的dp f[i]表示i容量的最大值 f[i]=max(f[i-j*c]+w[c][j]); 不过这个w数组差分之后是逐渐递减的. 可以发现…
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划分方案. \(n \le 10^5 , 1 \le P \le 10\) 题解 考虑暴力 \(O(n^2)\) dp. \[ dp_i = \min_{j = 0} ^ {i - 1} |sum_j - sum_i - L|^P + dp_j \] 这个方程是具有决策单调性的. 决策单调性是指,对于…
单调性优化DP Tags:动态规划 作业部落链接 一.概述 裸的DP过不了,怎么办? 通常会想到单调性优化 单调队列优化 斜率优化 决策单调性 二.题目 [x] 洛谷 P2120 [ZJOI2007]仓库建设 [x] 洛谷 P2900 [USACO08MAR]土地征用 [x] 洛谷 P3195 [HNOI2008]玩具装箱 [x] 洛谷 P3628 [APIO2010]特别行动队 [ ] 洛谷 P4360 [CEOI2004]锯木厂选址(留作复习) [x] 洛谷 P4072 [SDOI2016]…
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最小代价.然后有个正常的dp方程. $f[i]=min \{ f[j]+|sum_i-sum_j-1-L|^p \} $ 然后观察发现带高次项,不好斜率优化或单调队列,考虑有没有决策单调性.本来是可以打表证明的,然后拍一下.然而我杠一波瞎证了一下单调性. $证明:$ $已知f[j]+|sum_i-su…
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单独做.现在假设j都在i左边,则$ p_{i} = max \{ a_{j}-a_{i}+ \sqrt{i-j} \} = max \{ a_{j}+ \sqrt{i-j} \} - a_i$.带根号,不易斜率优化,考虑证决策单调性. 假设最优决策为j,j之前的任意决策称之为$j'$,只与$j$有关的项令之…
Part1-二分栈优化DP 引入 二分栈主要用来优化满足决策单调性的DP转移式. 即我们设\(P[i]\)为\(i\)的决策点位置,那么\(P[i]\)满足单调递增的性质的DP. 由于在这种DP中,满足决策点单调递增,那么对于一个点来说,以它为决策点的点一定是一段连续的区间. 所以我们可以枚举以哪个点作为决策点,去找到它所对应的以它为决策点的区间. 考虑如何找到一个点的区间: 可以发现,在当前情况下(枚举到以某个点作为决策点的情况下),该点所对应的区间一定为[L,N].(L可能等于N+1) 那么…