首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习框架Tensorflow数字识别MNIST
】的更多相关文章
机器学习框架Tensorflow数字识别MNIST
SoftMax回归 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 我们的训练集由 个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量 的维度为 ,其中 对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 在 softmax回归中,我们解决的是多分…
TensorFlow 之 手写数字识别MNIST
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros 版本: TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6 相关文章: TensorFlow 之 入门体验 TensorFlow 之 手写…
keras框架的MLP手写数字识别MNIST,梳理?
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from keras.utils import np_utils np.random.seed(10) # In[2]: from keras.datasets import mnist # In[3]: (x_train_image,y_train_label),(x_test_image,y_test_label…
Python3机器学习—Tensorflow数字识别实践
[本文出自天外归云的博客园] Windows下Anaconda+Tensorflow环境部署 1. 安装Anaconda. 2. 开始菜单 > 所有程序 > Anaconda 3 (64-bit) > Anaconda Prompt > 执行命令: conda create -n tensorflow python=3.5 至此创建了一个名字叫做tensorflow的虚拟环境,并指定了这个虚拟环境的python为3.5版本. 3. 激活虚拟环境,执行命令: activate ten…
吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data", one_hot=True) # 定义网络的超参数 learning_rate = 0.001 training_iters = 200000 batch_size = 128 display_step =…
吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0.9713.今天我们完成day40-42的课程,实现猫.狗的识别. 本文数据集下载地址 https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.…
实战Google深度学习框架-C5-MNIST数字识别问题
5.1 MNIST数据处理 MNIST是NIST数据集的一个子集,包含60000张图片作为训练数据,10000张作为测试数据,其中每张图片代表0~9中的一个数字,图片大小为28*28(可以用一个28*28矩阵表示) 为了清楚表示,用下图14*14矩阵表示了,其实应该是28*28矩阵 TF提供了一个类来处理MNIST数据: 准备工作:桌面新建MNIST数字识别->cd MNIST数字识别->shift + 右键->在此处新建命令窗口->jupyter notebook->新建g…
Tensorflow手写数字识别---MNIST
MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000…
keras框架的CNN手写数字识别MNIST
参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebook,运行如下代码.当然,事先准备好MNIST数据集. # coding: utf-8 # In[4]: from keras.datasets import mnist from keras.utils import np_utils import numpy as np np.random.se…