郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供了一个统一的框架,用于设计和分析分布强化学习(DRL)算法.我们的主要见识在于,可以将DRL算法分解为一些统计量估计和一种方法的组合,该方法插补与该统计集一致的回报分布.有了这种新的理解,我们就能对现有DRL算法进行改进的分析,并基于对回报分布期望的估计来构造新的算法(EDRL).我们将EDRL与各…