避免Redis/Memcached缓存失效引发Dogpile效应 Redis/Memcached高并发访问下的缓存失效时可能产生Dogpile效应(Cache Stampede效应). 推荐阅读:高并发下的 Nginx 优化方案 http://www.linuxidc.com/Linux/2013-01/78791.htm 避免Memcached缓存的Dogpile效应 Memcached的read-through cache流程:客户端读取缓存,没有的话就由客户端生成缓存.Memcached缓…
写在前面 周末,跟阿里的一个朋友(去年晋升为P9了)聊了很久,聊的内容几乎全是技术,当然了,两个技术男聊得最多的话题当然就是技术了.从基础到架构,从算法到AI,无所不谈.中间又穿插着不少天马行空的想象,虽然现在看起来不太实际,但是随着技术的进步,相信五年.十年之后都会实现的. 不知道是谁提起了在高并发环境下如何构建缓存服务,结果一路停不下来了!! 缓存特征 (1)命中率:命中数/(命中数+没有命中数) (2)最大元素(空间):代表缓存中可以存放的最大元素的数量,一旦缓存中元素的数量超过这个值,或…
Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额. 在高并发场景下,提供了保证线程安全的对象.方法.比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好.线程安全的StringBuilder取代String.StringBuffer等等(Java在多线程这块实现是非常优秀和成熟的). Java…
php高并发状态下文件的读写   背景 1.对于PV不高或者说并发数不是很大的应用,不用考虑这些,一般的文件操作方法完全没有问题 2.如果并发高,在我们对文件进行读写操作时,很有可能多个进程对进一文件进行操作,如果这时不对文件的访问进行相应的独占,就容易造成数据丢失 例如:一个在线聊天室(这里假定把聊天内容写入文件),在同一时刻,用户A和用户B都要操作数据保存文件,首先是A打开了文件,然后更新里面的数据,但这 里B也正好也打开了同一个文件,也准备更新里面的数据.当A把写好的文件保存时,这里其实B…
本文主要讲并行优化的几种方式, 其结构如下: 锁优化 减少锁的持有时间 例如避免给整个方法加锁 1 public synchronized void syncMethod(){ 2 othercode1(); 3 mutextMethod(); 4 othercode2(); 5 } 改进后 1 public void syncMethod2(){ 2 othercode1(); 3 synchronized(this){ 4 mutextMethod(); 5 } 6 othercode2()…
Linux的虚拟内存管理有几个关键概念: Linux 虚拟地址空间如何分布?malloc和free是如何分配和释放内存?如何查看堆内内存的碎片情况?既然堆内内存brk和sbrk不能直接释放,为什么不全部使用 mmap 来分配,munmap直接释放呢 ? Linux 的虚拟内存管理有几个关键概念: 1.每个进程都有独立的虚拟地址空间,进程访问的虚拟地址并不是真正的物理地址: 2.虚拟地址可通过每个进程上的页表(在每个进程的内核虚拟地址空间)与物理地址进行映射,获得真正物理地址: 3.如果虚拟地址对…
在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也.然而在一些高并发场景下必须要做一些优化. 项目是快递公司的快件轨迹查询项目,目前平均每小时调用量千万级别.轨迹查询以Oracle为主要数据源,Mongodb为备用,当Oracle不可用时,数据源切换到Mongodb.今年菜鸟团队加入后,主要数据迁移到了阿里云上,以Hbase为主要存储.其中Hbase…
写在前面 在实际工作中,有一种非常普遍的并发场景:那就是读多写少的场景.在这种场景下,为了优化程序的性能,我们经常使用缓存来提高应用的访问性能.因为缓存非常适合使用在读多写少的场景中.而在并发场景中,Java SDK中提供了ReadWriteLock来满足读多写少的场景.本文我们就来说说使用ReadWriteLock如何实现一个通用的缓存中心. 本文涉及的知识点有: 文章已收录到: https://github.com/sunshinelyz/technology-binghe https://…
死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库设计的潜在问题,一些不易捕捉的死锁可能出现从而影响业务.这里为大家介绍由于设计问题引起的键查找死锁及相关的解决办法. 这里我们在测试的同时开启trace profiler跟踪死锁视图(locks:deadlock graph).(当然也可以开启跟踪标记,或者应用扩展事件(xevents)等捕捉死锁)…
死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库设计的潜在问题,一些不易捕捉的死锁可能出现从而影响业务.这里为大家介绍由于设计问题引起的键查找死锁及相关的解决办法. 这里我们在测试的同时开启trace profiler跟踪死锁视图(locks:deadlock graph).(当然也可以开启跟踪标记,或者应用扩展事件(xevents)等捕捉死锁)…