1172 Hankson 的趣味题】的更多相关文章

1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知…
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知…
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现 在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个…
woc....这题考细节处理.要注意代码的逻辑顺序还有不要作死地循环到sqrt+1. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int t,a0,a1,b0,b1; int gcd(int a,int b) { ) return a; return gcd(b,a%b)…
算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现 在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整…
1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a…
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\(1<=n<=2,000,a0,a1,b0,a1<=2*1e9\) 用不是特别快的方法水过去的. 暴力枚举\(b1\)的约数,代入检验. 普通枚举约数复杂度\(O(\sqrt(L))\),检验的复杂度\(O(logL)\). 考虑到约数一个数\(k\)约数个数期望是\(log\)的. 所以先筛…
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数c1和c2的最大公约数和最小公倍数.现在Hankson认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"和"求公倍数"之类问题的"逆问题",这个问题是这样的:已知正整数a0,…
题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_0}{a_1})\) 额....上面这个式子似乎没用,看b的 \(lcm(x,b_0)=\frac{x*b_0}{gcd(x,b_0)}=b1\) 那么\(gcd(x,b_0)=\frac{x*b_0}{b_1}\) \(gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\)…
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:…