This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify images of digits. Neural networks with multiple hidden layers can be useful for solving classification problems with complex data, such as images. Each l…
Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn exactly what DNNs are and why they are the hottest topic in machine learning research. The term deep neural network can have several meanings, but on…
Convolutional Neural Networks are great: they recognize things, places and people in your personal photos, signs, people and lights in self-driving cars, crops, forests and traffic in aerial imagery, various anomalies in medical images and all kinds…
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系.由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型.比如,在广告CTR预估应用中,除了“标题长度.描述长度.位次.广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好).事实上,现在很多搜索引擎的广告系统用的都是Logistic Regression模型(线性),而模型团队最重要的工作之一就是“特征工程 (feature engineer…
尽管我们有很多经验丰富的软件开发人员,但是利用hard code的方法,要解决一些问题,我们的程序员还是优点捉襟见肘,这些问题包括,识别手写数字照片上的数字:分辨一张彩色照片上是否有一只猫咪:准确理解老婆说的“男人说话要是算数,母猪也会上树”这句话的真实含义,等等.这些我们人类处理起来得心应手的问题,计算机程序处理起来却显得很笨拙. 当然,有问题就要去寻找解决方案.其实在很早的时候,我们的计算机科学家前辈们就开始做了这方面的研究,提出的理论和算法有SVM,神经网络等.但是在那个GPU还没有发明,…
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化). 甚至在一些场景下,网络层数的增加反而会降低正确率.这种本质问题是由于出现了信息丢失而产生的过拟合问题(overfitting,所建的机器学习模型或者是深度学习模型在训练样本中表现的过于优越,导致在验证数据集及测试数据集中表现不佳,即为了得到一致假设而使假设变得过度复杂).解决思路是尝试着使他们引入这些刺…
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, 2018 · Updated September 15, 2018 1.目标-TensorFlow CNN 卷积神经网络 在之前的TensorFlow教程中,我们讨论了使用TensorFlow进行手写识别.今天我们讲学习怎样使用TensorFlow创建一个卷积神经网络关于CIFAR 10的分类模型…
自己讲论文做的异构图神经网络的ppt.再转变成博客有点麻烦,所以做成图片笔记. 论文链接:https://arxiv.org/abs/1903.07293…
参考自http://deeplearning.stanford.edu/wiki/index.php/Neural_Networks 神经元模型 h(x)= f(W'x)f(z)一般会用sigmoid函数f(z) = 1/(1+exp(-z)) 或tanh函数f(z) = (exp(z)-exp(-z))/(exp(z)+exp(-z)), 两个函数样子类似,区别是sidmoid的值域0~1,tanh在-1~1注意sigmoid函数的导数特征f'(z)=f(z)(1-f(z))或tanh函数f'…
      引言         深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式.那么,深度学习有多深?学了究竟有几分?本文将带你领略深度学习高端范儿背后的方法与过程. 一.概述 Artificial…