time_zones[:10] Out[19]: [u'America/New_York', u'America/Denver', u'America/New_York', u'America/Sao_Paulo', u'America/New_York', u'America/New_York', u'Europe/Warsaw', u'', u'', u''] 接下来对时区进行计数,这里使用两种方法,一种使用Python标准库,另一个比较简(使用pandas). def get_counts…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第一个实例:1.usa.gov data from bit.ly 简介:2011年,URL缩短服务bit.ly和美国政府网站usa.gov合作,提供了一份从生成.gov或.mil短链接用户那里收集来的匿名数据 数据下载地址:https://github.com/wesm/py…
自计算机诞生以来,也伴随着计算机语言的诞生,现在,全世界的编程语言有600多种,但流行的编程语言也就20多种. Java和C一直占据着前两名.但是近年来伴随着人工智能的发展,Python发展迅猛,以其独特简单易学以及功能的强大,受到 越来越多的欢迎. Python的特点(1)Python是一门面向对象的语言,是一种理想的脚本工具. (2)Python的使用和分发完全是免费的,将其嵌入你的系统或随产品发布都不受限制 (3)Python是可移植的,可以在所有主流平台上编译和运行,像Linux和UNI…
学习一门语言就是不断实践,python是目前用于数据分析最流行的语言,我最近买了本书<利用python进行数据分析>(Wes McKinney著),还去图书馆借了本<Python数据分析基础教程--NumPy学习指南>(第二版),准备将python数据分析工具的门给入了哈哈,闲话少说,直接切入正题. 首先<利用python进行数据分析>此书的译者强烈建议计算机环境的配置最好与书上的一致,所以我找了半天书上要求用的安装包 第一,安装32位的EPDFree(书上的版本就是3…
总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和…
本文主要介绍IPython这样一个交互工具的基本用法. 1. 简介 IPython是<利用Python进行数据分析>一书中主要用到的Python开发环境,简单来说是对原生python交互环境的增强.作者进行Python开发最经典的开发环境搭配是:IPython外加一个文本编辑器,其实我自己平时写python代码也差不多是这样的开发环境:Windows系统下是IPython加notepad++,Linux系统下是IPython加vim,写起代码来体验很流畅,很容易获取到那种"流体验&q…
"利用python进行数据分析"学习记录 --day01 08/02 与书相关的资料在 http://github.com/wesm/pydata-book pandas 的2名字来源是 pannel data 安装python的包 conda install package_name pip install package_name 更新python的包 conda update package_name pip install --upgraade package_name 我觉得…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第四个实例:USDA Food Database 简介:美国农业部(USDA)制作了一份有关食物营养信息的数据 数据下载地址: https://github.com/wesm/pydata-book/tree/2nd-edition/datasets/usda_food 准备…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第三个实例:US Baby Names 1880-2010 简介: 美国社会保障总署(SSA)提供了一份从1880年到2010年的婴儿姓名频率的数据 数据地址: https://github.com/wesm/pydata-book/tree/2nd-edition/data…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第二个实例:MovieLens 1M Data Set 简介: GroupLens Research提供了从MovieLens用户那里收集来的一系列对90年代电影评分的数据 数据地址:http://files.grouplens.org/datasets/movielens/…
列表,元组 #list l1 = [1, 2, 3, '高弟弟'] #定义一个列表 #增 l1.append("DSB") #最后增加"DSB"的元素 #删 l1.remove("高弟弟") #删除"高弟弟"元素 l1.pop(3) #删除列表第4个元素 del l1[-1] #删除列表最后一个元素 #改 l1[3] = 'DSB' #修改第4个元素为'DSB' #查 l2 = [2, 5, 4, 8, 6, 1, 4, 5,…
最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析(1):配置安装环境>.还需要安装第三方包包括NumPy.pandas.matplotlib.IPython.SciPy.用pip安装工具下载自动安装即可,如果有网络问题,请在自行百度"host google"更新host文件. 接下来是配置IPython,初步感受了这个与之前接触的…
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行…
点击获取提取码:hi2j 内容简介 [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计算的权威指南." --Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一 [内容简介] 还在苦苦寻觅用Python控制.处理.整理.分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy.pandas.matplo…
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装,EPDFree包括了Numpy,Scipy,matplotlib,Chaco,IPython.这里的pandas需要自己安装,对应版本为pandas-0.…
资料下载地址: 链接:https://pan.baidu.com/s/1y1C0bJPkSn7Sv6Eq9G5_Ug 提取码:vscu <利用Python进行数据分析(第二版)>高清中文版PDF+高清英文版PDF+配套源代码 高清中文版PDF,带目录和书签,能够复制粘贴:高清英文版PDF,带目录和书签,能够复制粘贴:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中,高清中文版如图:…
Python是近几年比较火的编程语言之一,因为人工智能的火爆,让很多人都想从事python开发.很多零基础学员在学习python的时候都会走一些弯路,下面小编就为大家分享python学习路线图,帮助零基础学员在学习的时候少走弯路. 1.python语言基础 (1)Python3入门,数据类型,字符串 (2)判断/循环语句,函数,命名空间,作用域 (3)类与对象,继承,多态 (4)tkinter界面编程 (5)文件与异常,数据处理简介 (6)Pygame实战飞机大战,2048 2.python语言…
来自:标点符的<Python 日期时间处理模块学习笔记> Python的时间处理模块在日常的使用中用的不是非常的多,但是使用的时候基本上都是要查资料,还是有些麻烦的,梳理下,便于以后方便的使用.关于时间需要先了解的几个概念: 秒 在1967年的第13届国际度量衡会议上决定以原子时定义的秒作为时间的国际标准单位:铯133原子基态的两个超精细能阶间跃迁对应辐射的9,192,631,770个周期的持续时间, 起始历元定在1958年1月1日0时. 原子钟是一种时钟,它以原子共振频率标准来计算及保持时间…
推荐Full Stack Python 有各种python资源汇总,从基础入门到各种框架web应用开发和部署,再到高级的ORM.Docker都有.以下是Full Stack Python 上总结的一些教程,我拙劣的翻译了以下,并调整(调整顺序并删了部分内容)了一下: 1.无开发经验,初学python 如果你不会其他语言,python是你的第一门语言: A Byte of Python (简明python教程,这个有中文版简明 Python 教程)是非常好的入门教程. Learn Python t…
孤荷凌寒自学python第六十六天学习mongoDB的基本操作并进行简单封装5并学习权限设置 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第十二天. 今天继续学习mongoDB的简单操作,并继续对一些可能反复经常使用的操作进行简单的封装.同时通过搜索了解了如何对本地Mongo数据库进行权限设置(没有实践本地数据库的用户权限设置.) 按个人规划,今天是初步了解学习MongoDb数据库的最后一个学习日,后续将在真正使用此数据库时,再对其进行深入研究. 一.今天完成了两个可…
最近在学习<利用Python进行数据分析>,找到了github项目的地址, 英文版本,中文版本 (非常感谢翻译中文的作者). mark一下,方便后边学习查找.…
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5.2基本功能 5.2.1重新索引5.2.2丢弃指定轴上的项5.2.3索引.选取和过滤5.2.4算术运算和数据对齐5.2.4.1在算术方法中填充值5.2.4.2 DataFrame和Series之间的运算5.2.5函数应用和映射5.2.6排序和排名5.2.7带有重复的轴索引5.3汇总和计算描述性统计5.…
第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas.NumPy.IPython和Jupyter,并增加大量实际案例,可以帮助高效解决一系列数据分析问题. 第2版中的主要更新了Python第三方发布版Anaconda和其他所需Python包的安装指引: 更新pandas库到2017年的新版: 新增一章关于更多高级pandas工具和一些使用提示:新增statsmodels和scikit-learn的简明使用介绍. 学习参考: <利用Python进行数据分析(第二版)>高清中文…
利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基础的第三方库在数据处理时显得尤为重要,即分别为NumPy库和Pandas库,前面的章节我们对于NumPy的入门有了详细的介绍,这个章节我们主要是对于Pandas库进行系统的总结.说一点题外话,之前对于学习知识的时候,基本上都是在网上看视频,但是看视频的时候,当时基本上都能够理解并且觉得很简单,也没有…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas as pd import numpy as np from pandas import Series,DataFrame data = Series(np.random.randn(12),index=[['],['张三','李四','王五','张三','李四','王五','张三','李四','王五','张三…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 import pandas as pd import numpy as np file =…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. In [1]: import numpy as np In [2]: import pandas as pd In [3]: from pandas import DataFrame,Series In [4]: data = {'class':['语文','数学','英语'],'score':[120,130,140]} In [5]: frame = DataFrame(data)…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 第一 重新索引 Series的reindex方法 In [15]: obj = Series([3,2,5,7,6,9,0,1,4,8],index=['a','b','c','d','e','f','g', ...: 'h','i','j']) In [16]: obj1 = obj.reindex(['a','b','c','d','e','f','g','h','i','j','…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21]: from pandas import Series,DataFrame In [22]: import pandas as pd Series 是一种类似一维数组的对象,是一组数据与索引的组合.如果没设置索引,默认会加上. In [23]: obj = Series([4,3,5,7,8,1,2]) In…