Catalan数总结】的更多相关文章

应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数表示答案 样例输入 Sample Input 6 样例输出 Sample Output 132 数据范围及提示 Data Size & Hint 1<=n&l…
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人…
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要注意,就算开long long 也只能表示到第33个,之后就会溢出. &代码: void Solve() { f[1]=1; for(int i=2;i<40;i++){ f[i]=f[i-1]*(4*i-2)/(i+1); } PIar(f,40) } 输出数据在下面,也很显然,33之后就变成…
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) =h(n-1)*2(2n-1)/(n+1) 具体推导请百度,这里只需记得推导公式为h(n)=h(n-1)*2(2n-1)/(n+1)即可. 我们来说说这个的应用吧,从catalan数的定义递归定义可以看出,它是由自己 本身的一部分和n减去一部分 的和得到的,也就是说,有n个物品,1个物品进行操作1,n-…
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种:n=3,可以是1,2,3或1,3,2或2,1,3或2,3,1或3,2,1:一共5种:容易联想到可能有一个通项公式可以求:(扯一点,以前学栈的时候做过判断一个序列是否为合法的出栈顺序的题目,只要依次检查序列,对于一个元素i,在i后面出来的且序号比i小的肯定是从大到小出来的,比如 4 2 1 3,如果4…
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为 令其为h(n)的话,满足h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 我们从中取出的Cn就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,…
Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均大于零. Raney引理有一个很简单的数形结合的证明见<浅谈数形结合思想在信息学竞赛中的应用>. 关于Catalan数wiki和百科上写的很详细,其中有一问题一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?该问题的解为h(n). 用1表示一个数字进栈,-1表示一个数字出栈,…
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n + 2) 题目要求对M = 1e9+7 取模 利用乘法逆元将原式中除以(n+2)取模变为对(n+2)逆元的乘法取模 C[n+1] = C[n] * (4 * n + 2) * Pow(n+2, MOD-2) % MOD 其中Pow用快速幂解决 #include <cstdio> #include…
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排. 用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案. 比如000000111111就对应着 第一排:0 1 2 3 4 5 第二排:6 7 8 9 10 11 010101010…