一.引言 前面我们谈论到的算法都是在给定\(x\)的情况下直接对\(p(y|x;\theta)\)进行建模.例如,逻辑回归利用\(h_\theta(x)=g(\theta^T x)\)对\(p(y|x;\theta)\)建模,这类算法称作判别学习算法. 考虑这样一个分类问题,我们根据一些特征来区别动物是大象\((y=1)\)还是狗\((y=0)\).给定了这样一个训练集,逻辑回归或感知算法要做的就是去找到一个决策边界,将大象和狗的样本分开来.可以换个思路,首先根据大象的特征来学习出一个大象的模型…
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classificat…
网易公开课,第5课 notes,http://cs229.stanford.edu/notes/cs229-notes2.pdf 学习算法有两种,一种是前面一直看到的,直接对p(y|x; θ)进行建模,比如前面说的线性回归或逻辑回归,这种称为判别学习算法(discriminative learning algorithms) 另外一种思路,就是这里要谈的,称为生成学习算法(generative learning algorithms),区别在于不会直接对p(y|x; θ)进行建模,而是对p(x|…
在线性回归.逻辑回归.softmax回归中,学习的结果是\(p(y|x;\theta)\),也就是给定\(x\)的条件下,\(y\)的条件概率分布,给定一个新的输入\(x\),我们求出不同输出的概率,我们称这一类学习算法为判别学习算法​(discriminative learning algorithm):这一节,我们介绍另一类学习算法:生成学习算法(generative learning algorithm),在生成学习算法中,我们对\(p(x|y)\)和\(p(y)\)建模,也就是说,我们求…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
课程视频地址:http://open.163.com/special/opencourse/machinelearning.html 课程主页:http://cs229.stanford.edu/ 更具体的资料链接:https://www.jianshu.com/p/0a6ef31ff77a 笔记参考自中文翻译版:https://github.com/Kivy-CN/Stanford-CS-229-CN 这一讲介绍了高斯判别分析以及朴素贝叶斯算法. Part IV 生成学习算法 到目前为止,我们…
"generative algorithm models how the data was generated in order to categorize a signal. It asks the question: based on my generation assumptions, which category is most likely to generate this signal?discriminative algorithm does not care about how…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    What is Machine Learning    1 1.2    学习心得和笔记的框架    1 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知…
原文:https://herbertmj.wikispaces.com/stacking%E7%AE%97%E6%B3%95 stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学习器的概念,但是使用的相对于bagging和boosting较少,它不像bagging和boosting,而是组合不同的模型,具体的过程如下:1.划分训练数据集为两个不相交的集合.2. 在第一个集合上训练多个学习器.3. 在第二个集合上测试这几个学习器4. 把第三步得到的预测结果作为输入,把正确的回…
在前面几课里的学习算法的思路都是给定数据集以后.确定基于此数据集的最佳如果H函数,通过学习算法确定最佳如果H的各个參数,然后通过最佳如果函数H得出新的数据集的结果.在这一课里介绍了一种新的思路,它的核心思想是直接计算各种如果的最高概率,然后拟合各个如果的最高概率參数,并利用拟合得到的如果概率,计算出新的数据集的概率,选取概率最高的如果直接得出分类类别. 整个生成学习算法的精髓在于条件概率的使用.在二元分类里,也能够称为分别算法.在给定的数据集里确定p(y) 和p(x|y),然后根据贝叶斯定理.得…
2014 TKDE(IEEE Transactions on Knowledge and Data Engineering) 张敏灵,周志华 简单介绍 传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语义,含有多个标签.本综述主要介绍了多标签学习的一些相关内容,包括相关定义,评价指标,8个多标签学习算法,相关的其它任务. 论文大纲 相关定义:学习任务,三种策略 评价指标:基于样本的评价指标,基于标签的评价指标 学习算法:介绍了8个有代表性的算法,4个基于问题转化的算法和4…
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. AdaBoo…
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是gan Generative model G用来生成样本 Discriminative model D用来区别G生成样本的真假 G努力的方向是生成出以假乱真的样本,让D认为这样本是人类给的而不是G创造的,D则相反. 一个更加形象的比喻 小时候老师让试卷上家长签字,以确保家长看过我那卑微的成绩.于是乎我尽…
下图为四种不同算法应用在不同大小数据量时的表现,可以看出,随着数据量的增大,算法的表现趋于接近.即不管多么糟糕的算法,数据量非常大的时候,算法表现也可以很好. 数据量很大时,学习算法表现比较好的原理: 使用比较大的训练集(意味着不可能过拟合),此时方差会比较低:此时,如果在逻辑回归或者线性回归模型中加入很多参数以及层数的话,则偏差会很低.综合起来,这会是一个很好的高性能的学习算法.…
一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中的关系.值得注意的是,没有一个学习算法是能同时保证高查准率和召回率的,要高查准率还是高召回率,取决于自己的需求.此外,查准率和召回率之间的关系曲线可以是多样性,不一定是图示的形状. 如何取舍查准率和召回率数值: 一开始提出来的算法有取查准率和召回率的平均值,如下面的公式average=(P+R)/2…
绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制一条学习曲线,通常先绘制出训练集数据的平均误差平方和(Jtrain),或者交叉验证集数据的平均误差平方和(Jcv).将其绘制成一个关于参数m的函数.也就是一个关于训练集.样本总数的函数.m一般是一个常数,比如m等于100,表示100组训练样本.但我们要自己取一些m的值,也就是说对m的取值做一点限制,…
怎样评价我们的学习算法得到的假设以及如何防止过拟合和欠拟合的问题. 当我们确定学习算法的参数时,我们考虑的是选择参数来使训练误差最小化.有人认为,得到一个很小的训练误差一定是一件好事.但其实,仅仅是因为这个假设具有很小的训练误差,当将其样本量扩大时,会发现训练误差变大了,这说明它不是一个好的假设.比如下图,拟合的非常好,一旦样本量改变,其训练误差随之增大. 那么我们如何判断一个假设是否是过拟合的呢?我们可以画出假设函数h(x),然后观察.但对于更一般的情况,特征有很多个,比如下图.想要通过画出假…
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe…
生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object tracking>(XiLi,ACMTIST,2013),在文章的第4节第1段有这样的描述,“Recently,visualobject tracking has been posed as a tracking-by-detectionproblem, where statistical modeli…
也没啥原创,就是在学习深度学习的过程中丰富一下我的博客,嘿嘿. 不喜勿喷! Hinton是深度学习方面的大牛,跟着大牛走一般不会错吧-- 来源:A fast learning algorithm for deep belief nets 看着引用次数,什么时候我也能来一篇(不要笑我这个学渣). 摘要中出现的几个词就让我有点茫然: complementary priors,这是一个启发规则还是什么鬼的 explaining away effects,没听说过这个效应捏 据说他的这种快速的贪心算法(…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share adaboost(adaptive boost) bootsting is a fairly simple variation on bagging…
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X…
很久没有更文章了,主要是没有找到zero-shot learning(ZSL)方面我特别想要分享的文章,且中间有一段时间在考虑要不要继续做这个题目,再加上我懒 (¬_¬),所以一直拖到了现在. 最近科研没什么进展,就想着写一个ZSL的入门性的文章,目的是为了帮助完全没有接触过这方面,并有些兴趣的同学,能在较短的时间对ZSL有一定的认识,并且对目前的发展情况有一定的把握. 在此之前,需要提到的是:无论是论文笔记,还是总结性的读物,都包含了作者自己的理解和二次加工,想要做出好的工作必定需要自己看论文…
目录 论文信息: Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017: 1126-1135. 一.摘要 元学习的目标是在各种学习任务上训练一个模型,这样它就可以使用…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2007.08794v1 [cs.LG] 17 Jul 2020 Abstract 强化学习(RL)算法根据经过多年研究手动发现的几种可能规则之一来更新智能体的参数.从数据中自动发现更新规则可能会导致效率更高的算法,或者更适合特定环境的算法.尽管已经进行了尝试来应对这一重大的科学挑战,但是仍然存在一个未决的问题,即发现RL基本概念的替代方法(例如价值函数和时序差分学习)是否可行.本文介绍了一种新的元学习方法,该方法通过与一…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式…
集成学习,又称为“多分类器系统”(multi-classifier system).“基于委员会的学习”(committee-based learning)等.基本的想法是结合多个学习器,获得比单一学习器泛化性能更好的学习器. 根据个体学习器的生成方式,目前集成学习大致可分为两大类: 序列化方法:个体学习器间存在强依赖关系.必须串行生成,代表是Boosting: 并行化方法:个体学习器间不存在强依赖关系.可同时生成,代表是Bagging和“随机森林”(Random Forest). 一.利用Ho…