Pandas基本功能之选取索引和过滤】的更多相关文章

索引.选取和过滤 大部分的查询用法 类型 说明 obj[val] 选取DataFrame的单个列或一组列 obj.ix[val] 选取DataFrame的单个行或一组行 obj.ix[:,val] 选取单个列或列子集 obj.ix[val1,val2] 同时选取行和列 reindex方法 将一个或多个轴匹配到新索引 xs方法 根据标签选取单行或单列,并返回一个Series icol.irow方法 根据整数位置选取单列或单行,并返回Series get_value.set_value方法 根据行标…
层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b','b','c','c','d','d'], [1,2,3,1,2,3,1,2,2,3] ]) data a 1 0.965999 2 -0.271733 3 0.133910 b 1 -0.806885 2 -0.622905 3 -0.355330 c 1 -0.659194 2 -1.08287…
http://blog.csdn.net/pipisorry/article/details/53486777 pandas高级功能:面板数据.字符串方法.分类.可视化. 面板数据 {pandas数据结构有一维Series,二维DataFrame,这是三维Panel}pandas有一个Panel数据结构,可以将其看做一个三维版的,可以用一个由DataFrame对象组成的字典或一个三维ndarray来创建Panel对象:import pandas.io.data as webpdata = pd.…
  重新索引   pandas对象的一个重要方法是 reindex ,其作用是创建一个适应新索引的新对象. #reindex函数的参数 reindex(index,method,fill_value,limit,level,copy) #index:用作索引的新序列 #method:插值(填充)方式 #fill_value:在重新索引的过程中,需要引入缺失值时使用的代替值 #limit:前向或后向填充时的最大填充量 #level:在MultiIndex的指定级别上匹配简单索引,否则选取其子集 #…
1.序言 如何切片,切块,以及通常获取和设置pandas对象的子集 2.索引的不同选择 对象选择已经有许多用户请求的添加,以支持更明确的基于位置的索引.Pandas现在支持三种类型的多轴索引. .loc主要是基于标签的,但也可以与布尔数组一起使用.当找不到物品时.loc会提高KeyError.允许的输入是: 单个标签,例如5或'a'(注意,它5被解释为索引的 标签.此用法不是索引的整数位置.). 列表或标签数组.['a', 'b', 'c'] 带标签的切片对象'a':'f'(注意,相反普通的Py…
Pandas基本功能详解 Pandas  Pandas基本功能详解 |轻松玩转Pandas(2) 参考:Pandas基本功能详解 |轻松玩转Pandas(2)…
重新索引 reindex重置索引,如果索引值不存在,就引入缺失值 参数介绍 参数 说明 index 用作索引的新序列 method 插值 fill_vlaue 引入缺失值时的替代NaN limit 最大填充量 level 指定级别上匹配简单索引,否则选取子集 copy 默认为True 实例: import pandas as pd import numpy as np from pandas import Series obj = Series([4.5,7.2,-5.3,3.6],index=…
numpy array 过滤后的数组,索引值从 0 开始. pandas Series 过滤后的 Series ,保持原来的索引,原来索引是几,就是几. 什么意思呢,来看个栗子: import numpy as np import pandas as pd # 有两个相同的数组,一个是pd Series 一个是 np array a = pd.Series([1, 2, 3, 4]) c = np.array([1, 2, 3, 4]) # 通过索引数组来过滤数组 d = a[a>3] e =…
1.读取.csv文件 df2 = pd.read_csv('beijingsale.csv', encoding='gb2312',index_col='id',sep='\t',header=None) 参数解析见:https://www.cnblogs.com/datablog/p/6127000.html index_col用于指定用作行索引的列编号或者列名,sep用于指定文件的分隔符(默认是以,作为分隔符),header=None 不用文件的的第一行作为列索引 文件读取之后生成的是一个D…
1. 删除列层次化索引 用pandas利用df.groupby.agg() 做聚合运算时遇到一个问题:产生了列方向上的两级索引,且需要删除一级索引.具体代码如下: # 每个uesr每天消费金额统计:和.均值.最大值.最小值.消费次数.消费种类. action_info = student_action.groupby(['outid','date']).agg({'opfare':['sum','mean','max','min'], 'acccode':['count','unique'],}…