利用指数表和对数表,实现GF(2^8)的乘法优化. 首先利用简单的基础的GF(2^8)乘法,构造指数表和对数表.在这里选取生成元3. 指数表exp[i] = 3^i,对数表log[i] = log3(i). 要实现x 与 y 相乘,首先利用对数表找出3^m = x, 3^n = y,这时的乘法就是 x * y = 3^m * 3^n = 3^(m+n),然后利用指数表找到exp[m+n]对应的值. 因此所有的乘法都变成了查表操作,提高了效率.但是对于数域较大时,保存对数表和指数表的空间要求较高.…