Feature Scaling 可以翻译为特征归一化,或者数据归一化,比如统计学习中,我们一般都会对不同量纲的特征做归一化,深度学习中经常会谈到增加的BN层,LRN层会带来训练收敛速度的提升,等等.问题是,我们为什么需要做Feature Scaling呢?可以不做吗?做Feature Scaling背后的数学意义是什么? 首先,我们来看看下面一个简单的神经元 如果x1的输入值范围在(0,10), 而x2的值输入值范围在(1000, 10000),在模型训练(一般选择梯度下降法)时,需要迭代更新可…