[解释] [解释] 比如算法中的learing rateα(学习率).iterations(梯度下降法循环的数量).L(隐藏层数目).n[l] (隐藏层单元数目).choice of activation function(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数. [解释] 在深度神经网络的这许多隐藏层中,较早的前几层能学习一些低层次的简单特征,等到后几层,就能把简单的特征结合起来,去探测更加复杂的东西.比如你录在音频里的单词.词组或是句子…
Week 4 Quiz - Key concepts on Deep Neural Networks(第四周 测验 – 深层神经网络) \1. What is the "cache" used for in our implementation of forward propagation and backward propagation?(在实现前向传播和反向传播中使用的"cache"是什么?) [ ]It is used to cache the interme…
第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则办不到. 对于给定的问题很难去提前预测到底需要多深的神经网络,所以先去尝试逻辑回归,尝试一层然后两层隐含层, 然后把隐含层的数量看做是另一个可以自由选择大小的超参数,然后再保留交叉验证数据上 评估,或者用开发集来评估. 一些符号注意: 用 L 表示层数,上图5hidden layers :…
[解释] tree的两个bounding boxes 都要保留,因为交并比小于0.5:car 0.73保留:pedestrain 0.98保留:motorcycle 0.58保留.一共5个. [解释] 5个anchor box, 一个anchor box 对应(1+4+20)个标签,所以output volume 是 19*19*5*25…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Coursera which is moderated by moderated by DeepLearning.ai. The course is taught by Andrew Ng. Introduction to deep learning Be able to explain the maj…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…