洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!\(SHOI\) 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!" \(SHOI\) 概率充电器由\(n-1\) 条导线连通了\(n\) 个充电元件.进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进…
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 $\times 1$ )然后累加. 然而,直接求通电的概率不是很好求,所以可以求不通电的概率,然后 $1$ 减去这个就是通电的概率了~ 先假定以 $1$ 为根,令 $f[i]$ 表示仅考虑 $i$ 的子树及 $i$ 的影响时 $i$ 充不到电的概率. 则有: $f[i]=(1-q[i])\prod_…
P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!" SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直接亮的概率减去当儿子不亮且他们之间的路径均不直接亮时的概率 接着考虑从父亲来的贡献,设$p$为:$\frac{g[u]\times f[u]}{f[v]+(1-f[v])\times(1-dis[i])}$ 则:(画画图就可以理解) $$ g[v]=p+(1-p)\times(1-dis[i]) $…
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 仓鼠找sugar II 好像只有洛谷有诶... 日常吐槽 这个期望题开发新思维方式还是比较好的... 毕竟还是很难想的...鸣谢\(fdfDarkfire\)教我做这个题! 题解来了 很容易发现答案就是\(\dfrac{\sum_{i=1}^{n}\sum_{i=1}^{n}dis[i][j]}{…
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给\(x\)带来的概率\(g_x\),和\(x\)及其子树通电给\(x\)带来的概率\(f_x\). 对于两个独立的事件\(A,B\),由概率加法公式,\(P(A+B)=P(A)+P(B)-P(A)P(B)\),\(F_x=f_x+g_x-f_xg_x\). 令\(p_x\)表示\(x\)本身通电的概…
著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!” SHOI 概率充电器由n-1 条导线连通了n 个充电元件.进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决定.随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行 间接充电. 作为SHOI 公司的忠实客户,你无…
洛谷题目传送门 你谷无题解于是来补一发 随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述...... 于是来想想怎么利用题目的性质,把复杂度降下来. 首先,每个点的输出状态只有\(0/1\),于是每个点的总状态也非常有限,可以根据权值为\(1\)的儿子数量\(0-3\)分为四种,记为该点的点权. 我们都会模拟暴力过程--先改叶子节点(先默认为\(0\)改为\(1\)),如果它的父亲此时权值为\(1\)的儿子数量从原来小于\(0\)的变成大于\(0\)的,那么父…
题目: 洛谷 3239 分析: 卡牌造成的伤害是互相独立的,所以 \(ans=\sum f_i\cdot d_i\) ,其中 \(f_i\) 表示第 \(i\) 张牌 在整局游戏中 发动技能的概率.那么现在的问题是求 \(f_i\) . 考虑对于一张特定的牌 \(i\) ,它发动技能的概率显然和比它大的牌是否发动技能无关.并且,这个概率只和有 多少个 比它小的牌发动了技能有关,而与具体是哪几张和发动顺序都无关.为什么呢?考虑正难则反,它发动技能的概率是 1 减去在 \(r\) 轮游戏中都没有发动…
题目: 洛谷1654 分析: 本人数学菜得要命,这题看了一整天才看明白-- 先说说什么是"期望".不太严谨地说,若离散型随机变量(可以看作"事件")\(X\)取值为\(x_i\)的概率为\(p_i\),则它的期望\(E(X)\)为: \[E(X)=\sum_i x_ip_i\] (下面大段胡扯可以跳过) 举个例子:Monster of the Mouth设计了一款游戏,从某知名OIer兔崽子2018年9月21日-22日在BZOJ上的提交记录中随机抽一个,如果是AC则…