theano 实现图像局部对比度归一化】的更多相关文章

很多时候我们需要对图像进行局部对比度归一化,比如分块CNN的预处理阶段.theano对此提供了一些比较方便的操作. 局部归一化的一种简单形式为: 其中μ和σ分别为局部(例如3x3的小块)的均值和标准差. 利用代码说明一下如何实现: import theano import numpy from theano.sandbox import neighbours from theano import tensor as T from theano import function from skima…
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for…
 版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe.tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活.池化后进行的一种处理方法.LRN归一化技术首次在AlexNet模型中提出这…
#include <opencv2/core.hpp> #include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream> using namespace cv; using namespace std; // 计时函数 void PrintMs(const char *text = &…
关于对比度: 调节对比度直观感受是,高对比度的图像明暗关系更明显,色彩更鲜艳:低对比度的图像表面像是蒙上一层灰,色彩不鲜艳. 需求: 制作一个面板,一个滑动条,拖动滑动条可以修改目标图片的对比度. 资料参考: https://softwarebydefault.com/2013/04/20/image-contrast/ 界面滑动条两端的值是-30~30,默认处于中间位置0.已知目标图像的Bitmap数据. 修改Bitmap的对比度. 将修改之后的Bitmap重新赋值给界面Image控件显示.…
本实例演示简单地改变图像的对比度和亮度,使用了如下线性变换来实现像素值的遍历操作: The parameters α > 0 and β often called the gain and bias parameters; sometimes these parameters are said to control contrast and brightness respectively. 代码如下: // 改变图像的对比度和亮度 #include <opencv2/opencv.hpp>…
本文用 Python 实现 PS 里的图像调整–对比度调整.具体的算法原理如下: (1).nRGB = RGB + (RGB - Threshold) * Contrast / 255 公式中,nRGB表示图像像素新的R.G.B分量,RGB表示图像像素R.G.B分量,Threshold为给定的阈值,Contrast为处理过的对比度增量. Photoshop对于对比度增量,是按给定值的正负分别处理的: 当增量等于-255时,是图像对比度的下端极限,此时,图像RGB各分量都等于阈值,图像呈全灰色,灰…
在AlexNet中LRN 局部响应归一化的理 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe.tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活.池化后进行的一种处理方法.LRN归一化技术首次在AlexNet模型中提出这个概念. AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下.…
参考文章:Freak特征提取算法  圆形区域分割 一.Brisk特征的计算过程(参考对比): 1.建立尺度空间:产生8层Octive层. 2.特征点检测:对这8张图进行FAST9-16角点检测,得到具有角点信息的8张图,对原图像img进行一次FAST5-8角点检测(当做d(-1)层,虚拟层),总共会得到9幅有角点信息的图像. 3.非极大值抑制: 4.亚像素插值:进过上面步骤,得到了图像特征点的位置和尺度,在极值点所在层及其上下层所对应的位置,对FAST得分值(共3个)进行二维二次函数插值(x.y…
1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述):参考描述:图像特征点描述. 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文. SURF对SIFT的改进: 引用Wiki百科中对SURF描述为:"SURF (Speeded Up Robust Features) is a robust local feature detector, first presented by Herbert Bay et al. in 2006, that ca…