CUDA(Compute Unified Device Architecture),是显卡厂商 NVIDIA 推出的运算平台. 0. 配置 显卡驱动的下载地址:Drivers - Download NVIDIA Drivers(根据自己的平台类型选择合适的显卡驱动) 1. 显卡 以 GeForce Gtx 1050 不同型号为例,其性能清单基本如下: 重点关注的参数: NVIDIA CUDA Cores,CUDA 核心数: 2. CUDA GPUS 查看不同系列和类型的 GPU(显卡) 对 CU…
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础image. 思路就是先把常用的东西都塞进去,build成image,此后使用时想装哪个框架就装. 为了体验重装系统的乐趣,所以采用慢慢来比较快的步骤,而不是通过Dockerfile来build. 环境信息 已经安装了Docker CE和NVIDIA Container Toolkit,具体流程参考这里…
刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu.com/p/31558973 来源:知乎 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为"资源" 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
现在有空整理一下关于深度学习中怎么加入dropout方法来防止测试过程的过拟合现象. 首先了解一下dropout的实现原理: 这些理论的解释在百度上有很多.... 这里重点记录一下怎么实现这一技术 参考别人的博客,主要http://www.cnblogs.com/dupuleng/articles/4340293.html 讲解一下用Matlab中的深度学习工具箱怎么实现dropout 首先要载入工具包.DeepLearn Toolbox是一个非常有用的matlab deep learning工…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
5.4.1 关于深度学习中的batch_size 举个例子: 例如,假设您有1050个训练样本,并且您希望设置batch_size等于100.该算法从训练数据集中获取前100个样本(从第1到第100个)并训练网络.接下来,它需要第二个100个样本(从第101到第200)并再次训练网络.我们可以继续执行此过程,直到我们通过网络传播所有样本.最后一组样本可能会出现问题.在我们的例子中,我们使用了1050,它不能被100整除,没有余数.最简单的解决方案是获取最终的50个样本并训练网络. 最终目的:  …
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…