首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数据清理,预处理 pandas dataframe 操作技巧 总结
】的更多相关文章
数据清理,预处理 pandas dataframe 操作技巧 总结
dsoft2 = data1.loc[(data1['程'] == "轻") | (data1['程'] == "中")]设置x下标plt.xticks(np.arange(24)) 特定列 排序 print(data.sort_values(axis = 0,ascending = True,by = '停留时间')) plt.savefig(name+".jpg") #中文myfont = FontProperties(fname=r'C:\…
如何通过Elasticsearch Scroll快速取出数据,构造pandas dataframe — Python多进程实现
首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用时14秒左右.每个分片用一个进程查询数据,最后拼接出完整的结果. 由于返回的json数据量较大,每次100多万到200多万,如何快速根据json构造pandas 的dataframe是个问题 — 笔者测试过read_json().json_normalize().DataFrame(eval(pan…
Python pandas DataFrame操作
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} >>> df = pd.DataFrame(dict1) >>> df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d 2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame) >…
python pandas dataframe 操作记录
从数据看select出数据后如何转换为dataframe df = DataFrame(cur.fetchall()) 如何更改列名,选取列,进行groupby操作 df.columns = ['member_id', 'poi', 'num'] df = df[['member_id','num']] grouped = df.groupby('member_id') df = grouped.aggregate(lambda x: sorted(list(x),reverse=True))…
python进行数据清理之pandas中的drop用法
好久好久没有更新博客了,之前自学的估计也都忘记差不多了.由于毕业选择从事的行业与自己的兴趣爱好完全两条路,心情也难过了很久,既然入职了就要好好干,仍要保持自己的兴趣,利用业余时间重拾之前的乐趣. 从基本的数据清理学起吧 讲一下drop函数的用法 删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是可选择性的返回另一个dataframe来存放删除后的数据. 删除无效项 df[df.isnull()] #返回的是个true或false的Series对象(掩码对象),…
从mysql8.0读取数据并形成pandas dataframe类型数据,精确定位行列式中的元素,并读取
from pandas import * import pandas as pd from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:wenwajiao@127.0.0.1:3306/ryandb?charset=UTF8MB4")#charset设置用于mysql8.0的新型字符集,清根据你的需要设定 print(engine) myframe = pd.read_sql(…
Pandas DataFrame操作
DataFrame的创建 >>> import pandas as pd >>> from pandas import DataFrame #define a dict >>> dic = {'Name':['Jeff','Lucy','Evan'],'Age':[28,26,27],'Sex':['Male','Female','Male']} Load the dict to the dataframe >>> df = Data…
Python:23种Pandas核心操作
Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法.一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一.在本文中,作者从基本数据集读写.数据处理和 DataFrame 操作三个角度展示了 23 个 Pandas 核心方法. Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目.它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理…
pandas神器操作excel表格大全(数据分析数据预处理)
使用pandas库操作excel,csv表格操作大全 关注公众号"轻松学编程"了解更多,文末有公众号二维码,可以扫码关注哦. 前言 准备三份csv表格做演示: 成绩表.csv subjects 小红 小强 小明 小兰 小刚 语文 65 76 90 80 90 数学 45 43 87 88 45 英语 99 86 86 80 86 成绩表1.csv subjects 小红 小强 小明 小夏 小兰 小王 小刚 小亮 生物 78 67 78 89 77 76 98 100 地理 90 98…
用Python的pandas框架操作Excel文件中的数据教程
用Python的pandas框架操作Excel文件中的数据教程 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要.作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单,但在Excel中却很复杂的事情的. 有道理吧?让我们开始吧. 为某行添加求和项 我要介绍的第一项任务是把某几列相加…