#P1099 树网的核 题解】的更多相关文章

题目描述 pdf 题解 这一题,刚开始看题目感觉好像很难,题目又长……一看数据范围,呵呵. 已经给出来这是个DAG,所以不用担心连通性的问题.那么怎么做呢? 朴素的做法是把树的直径的两个端点都统计出来,然后暴力算那个什么偏心距,这里可以用floyd预处理,反正才n才300.还有一点,怎么算一个点到一条路径的距离呢,很简单,计算点到路径的距离,由于这是一张树网,且已经预处理点对之间的距离,从而点k到路径(i,j)的距离即为 (dist[k][i]+dist[k][j]-dist[i][j])/ /…
P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网…
P1099 树网的核 (bzoj数据加强) 前置知识:树的直径 (并不想贴我的智障写法虽然快1倍但内存占用极大甚至在bzoj上MLE) 正常写法之一:用常规方法找到树的直径,在直径上用尺取法找一遍,再dfs,再全图找一遍. 分类讨论: 1.偏心距可能是所取路径上(非端点)的某一点与直径外一点的距离 解决方案:在该点上跑一遍dfs,不能通过树的直径,找到距离最远的点. 2.偏心距可能是所取路径的端点与直径端点之间未取部分的长度. 所取路径的端点在直径上,根据性质,与它相对距离最远的点十分显然是直径…
P1099 树网的核 无根树,在直径上找到一条长度不超过s的路径,使得最远的点距离这条路径的距离最短: 首先两遍dfs找到直径(第二次找的时候一定要吧father[]清零) 在找到的直径下枚举长度不超过s的链,ans的下界是直径两端点到这条链距离的最小值: 然后将直径上的点都标记,再次求一下别的点到直径的距离. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; in…
P2491 消防/P1099 树网的核 双倍经验,双倍快乐. 题意 在一个树上选择一段总长度不超过\(s\)的链使所有点到该链距离的最大值最小. 输出这个最小的值. 做法 Define:以下\(s\)指链或链长. 证明一下\(s\)一定处于直径上.假设它不在直径上,一定存在直径的其中一个端点到\(s\)的距离大于现在所处支链的最大距离.所以\(s\)不在直径上一定不优. 于是我们找到直径并记录下直径上的所有点. 然后,我们枚举直径上的每一个长度小于\(s\)的最长区间(最长原因显然,因为长度越短…
题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a, b)为a, b两结点间的距离. D(v, P)=min{d(v, u), u为路径P上的结点}. 树网的直径:树网中最长的路径成为树网的…
NOIP 2007 提高第四题. 啊......我还是看了题解才做出来的. 这题乍一看毫无头绪,但是我们spy on一下,暗中观察发现:n才300!随便打暴力水过去啊! 然后,这破题怎么暴力?感觉我的spfa,dijkstra都WA2了... 最后还是跑去看了题解. 一步一步慢慢模拟就出来了. 首先,肯定要跑floyd的. 然后,我们居然还要个邻接表来存图......(用来dfs求直径) 无脑Floyd的同时,记录一条直径的起点,终点. find_d求了一条直径上的所有点. 然后find_f求出…
给定一棵树, 你可以在树的直径上确定一条长度不超过 \(S\) 的链, 使得树上离此链最长的点距离最小, 输出这个距离 P2491 数据范围为 P1099 的 \(1000\) 倍 Solution 首先两次 \(dfs\) 确定树的直径, 即第一次随意从某一点出发到达最远点记为 \(s\), 第二次从 \(s\) 出发到达最远点 \(t\) , 则 \(s-t\) 即为树的直径 现在我们得到了直径, 试想树上现在有一条链, 包含点 \(a_{1},a_{2}...a_{n}\), 树上到此链最…
传送门 80分 $ Floyd $ 树的直径可以通过枚举求出.直径的两个端点$ maxi,maxj $ ,由此可知对于一个点 $ k $ ,如果满足 $ d[maxi][k]+d[k][maxj]==d[maxi][maxj] $ 那么 $ k $ 点一定在直径上.分别枚举位于直径上的起点 $ s $ 与终点 $ t $ . $ ecg $ 定义为 $ max{d(v,F)} $ 那么枚举出的线段的 $ ecg $ 一定为: $ max{min{d[maxi][s],d[maxi][t]},mi…
传送门 之前看李煜东的书一直感觉是道神题. 然后发现这题数据范围只有300?300?300? 直接上floydfloydfloyd然后暴力就完了啊. 代码: #include<bits/stdc++.h> using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans&l…