最短Hamilton路径 数位dp】的更多相关文章

最短Hamilton路径 #include<bits/stdc++.h> using namespace std; ; <<maxn][maxn]; int maps[maxn][maxn]; int main() { int n; cin >> n; ; i < n; i++) ; j < n; j++) cin >> maps[i][j]; memset(dp,0x3f3f3f3f,sizeof(dp)); dp[][] = ; ; i &l…
最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 第一行一个整数n.接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j]).对于任意的x,y,z,数据保证 a[x,x]=0,a…
状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. Input Format 第一行一个整数n. 接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j]). 对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y…
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格式 第一行输入整数nn. 接下来nn行每行nn个整数,其中第ii行第jj个整数表示点ii到jj的距离(记为a[i,j]). 对于任意的x,y,zx,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]. 输出格式 输出一个整数,表示最短H…
最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 第一行一个整数n. 接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j]). 对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a…
0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格式 第一行一个整数n. 接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j]). 对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且…
题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O(n^2 * 2^n),还是蛮恐怖的. 设f[i][j]表示当前经过状态为i,且当前在点j所花费的最小代价.其中i是二进制压缩值,从0-n-1位分别表示这个点是否经过了.目标状态为f[2^n - 1][n - 1],那么我们从小到大枚举i,再循环枚举当前点j和上一个状态所在的点k即可. 转移方程:f[i,…
题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次 输入 第一行一个整数n.接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j]).对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]. 输出 一个整数,表示…
ACAG 0x01-4 最短Hamilton路径 论为什么书上标程跑不过这道题-- 首先,这道题与今年CSP-S2的D1T3有着异曲同工之妙,那就是--都有$O(n!)$的做法!(大雾) 这道题的正解是状压DP. 对于任意时刻,我们可以使用一个$n$位二进制数,若其第$i$位为$1$,则表示第$i$个点已经被经过,反之未被经过.因此我们可以使用$f[i][j]$表示状态为二进制数$i$,目前处于点$j$时的最短路径. 在起点时,有$f[1][0]=0$,即只经过了点$0$,而相应的状态就是只有最…
给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格式 第一行输入整数n . 接下来n 行每行n个整数,其中第i行第j个整数表示点i到j 的距离(记为a[i,j]). 对于任意的x,y,z ,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]. 输出格式 输出一个整数,表示最短Hamilton路径…