data.table 中的动态作用域】的更多相关文章

data.table 中最常用的语法就是 data[i, j, by],其中 i.j 和 by 都是在动态作用域中被计算的.换句话说,我们不仅可以直接使用列,也可以提前定义诸如 .N ..I 和 .SD 来指代数据中的重要部分.演示之前,我们先创建一个新的 data.table ,并命名为 market_data,其中 date 列是连续的.market_data <- data.table(date = as.Date("2015-05-01") + 0:299)head(ma…
功能:Spring Data JPA中的动态查询 实现日期查询 页面对应的dto类private String modifiedDate; //实体类 @LastModifiedDate protected Calendar modifiedDate; 1 public Predicate toPredicate(Root<Infolink> root, CriteriaQuery<?> query, CriteriaBuilder cb) { 2 query.distinct(t…
这是一个 API 设计的思想实验,它从典型的 Go 单元测试惯用形式开始: func TestOpenFile(t *testing.T) { f, err := os.Open("notfound") if err != nil { t.Fatal(err) } // ... } 这段代码有什么问题?断言 if err != nil { ... } 是重复的,并且需要检查多个条件的情况下,如果测试的作者使用 t.Error 而不是 t.Fatal 的话会容易出错,例如: f, err…
在第一节中,我们回顾了许多用于操作数据框的内置函数.然后,了解了 sqldf 扩展包,它使得简单的数据查询和统计变得更简便.然而,两种方法都有各自的局限性.使用内置函数可能既繁琐又缓慢,而相对于各式各样的 R 函数来说,SQL 又不够强大,所以用 sqldf 进行数据的汇总统计,也不容易.data.table 包提供了一个加强版的 data.frame.它运行效率极高,而且能够处理适合内存的大数据集,它通过 [ ] 实现了一种自然的数据操作语法.如果尚未安装,请运行以下命令:install.pa…
data.table包提供了一个非常简洁的通用格式:DT[i,j,by]. 可以理解为:对于数据集DT,选取子集行i,通过by分组计算j. 对比与dplyr等包,data.table的运行速度更快. 创建方式和data.frame 一样 创建一个data.frame: DF = data.frame(x=c("b","b","b","a","a"),v=rnorm(5)) 创建一个data.table: D…
data.table 1.生成一个data.table对象 生成一个data.table对象,记为DT. library(data.table) :],V3=round(rnorm(),),V4=:) DT ##     V1 V2      V3 V4 ##  :    A   ##  :    B - ##  :    C - ##  :    A - ##  :    B   ##  :    C - ##  :    A - ##  :    B - ##  :    C   ## : …
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
data.table包主要特色是:设置keys.快速分组和滚得时序的快速合并.data.table主要通过二元检索法大大提高数据操作的效率,同时它也兼容适用于data.frame的向量检索法. require(data.table) ## Loading required package: data.table 1.创建data.table格式数据 类似于data.frame数据的创建,使用data.table函数 (DF = data.frame(x=c("b","b&qu…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率.于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求. data.table可是比dplyr以及Python中的pandas还好用的数据处理方式. 网络上充斥的是data.table很好,很棒,性能棒之类的,但是从我实际使用来看,就得泼个水,网上博客都是拿一…
fread中nThread 参数的使用   注意默认nThread=getDTthreads(),即使用所有能用的核心,但并不是核心用的越多越好,本人亲自测试的情况下,其实单核具有较强的性能,只有在数据大于3Gb的情况下,开启11核(我的机器全部核心30多核)效率才比一个核心更高,而默认使用全部的核心效率一直非常低.因此对于不是非常巨大的文件,建议设置为1,不要使用全部核心 fread中sep是自动检测的   所以在循环读入文件的过程中,就算不同文件的分隔符不同,也可以循环一次性方便的读入: 还…