弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁 JS实现: //定义邻接矩阵 let Arr2 = [ [0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535], [1, 0, 3, 7, 5, 65535, 65535, 65535, 65535], […
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径.因为只有3个顶点,因此需要查看v1->v0->v2,得到…
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要引入两个二维数组ShortPathTable和Patharc.ShortPathTable表示顶点到顶点的最短路径权值和的矩阵,Patharc表示对应顶点的最小路径的前驱矩阵.在为分析任何顶点之前,ShortPathTable初始化为图的邻接矩阵. 假设图G有N个顶点,那么需要对矩阵ShortPathTabl…
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; bord…
介绍 和 Dijkstra 算法一样,弗洛伊德(Floyd)算法 也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978 年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名 弗洛伊德算法(Floyd)计算图中 各个顶点之间 的最短路径,比如:先从 A 出发到各个点的最短路径,再从 B 出发,直到所有节点距离各个点的路径都会计算出来.而迪杰斯特拉算法用于计算图中 某一个顶点到其他顶点的最短路径. 弗洛伊德算法 VS 迪杰斯特拉算法: 迪杰斯特拉算法通过选定…
弗洛伊德(Floyd)算法 主要是用于计算图中所有顶点对之间的最短距离长度的算法,如果是要求某一个特定点到图中所有顶点之间的最短距离可以用;        ;    ;    ;            g.edges = , ,INF,},            {, ,  ,},            {INF, , ,INF},            {,,INF,}            }; ; i < g.n; i++)        ; j < g.n; j++)         …
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两点间的最短路径算法,称为多源最短路径算法. 常用的路径算法有: Dijkstra算法 SPFA算法\Bellman-Ford算法 Floyd算法\Floyd-Warshall算法 Johnson算法 其中最经典的是Dijkstra算法和Floyd算法.Floyd算法是多源最短路径算法,可以直接求出图…
#include <stdio.h> #define MAXVEX 20 //最大顶点数 #define INFINITY 65535 //∞ typedef struct {/* 图结构 */ int vexs[MAXVEX];//顶点下标 int arc[MAXVEX][MAXVEX];//矩阵 int numVertexes, numEdges;//顶点数和边数 }MGraph; //用户定义类型 typedef int Patharc[MAXVEX][MAXVEX]; typedef…
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路. 由于没有肚子的压迫,小Hi和小Ho决定好好的逛一逛这个鬼屋,逛着逛着,小Hi产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢? 提示:其实如果你开心的话,完全可以从每个节点开始使用Dijstra…
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析…