#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领大洗女子学院的大家打败了其他所有高中,取得了胜利,当然也就不用废校了.然而一群战车道的领导表示他们是口胡的,废校还是要废的. 军神的母亲西住志穗怒斥废校男,为了不造个大新闻,废校男承诺如果大洗学院可以打败大学队,就不用废校.(有种 OI 选手 PK ACM 选手的感觉呀)然而实力差距太大了,大洗女子学院最强…
题面 传送门 题解 转化为\(dfs\)序之后就变成一个区间加,区间查询\(k\)小值的问题了,这显然只能分块了 然而我们分块之后需要在块内排序,然后二分\(k\)小值并在块内二分小于它的元素--一个根号两个\(\log\)很悬啊-- 每次操作的值加上的值不超过\(len\)一看就有阴谋 因为每次加上的值很小,我们分块的时候保证一个块内的最大值和最小值之差不超过某个常数,这样我们就可以做一个前缀和了,之后二分的时候不需要再在块内二分,可以减少一个\(\log\) 还有就是可能要定期重构块,具体细…
题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法的方案数. 然后就和 BZOJ4766文艺计算姬 一致了,假设两边点集大小分别为 \(n,m\) ,生成树个数就是 \(n^{m-1}m^{n-1}\) 证明可以考虑 prufer 序列还原树时的操作,将所有点先放入 set 中,每次将没有出现在序列中的编号最小的点拿出来和 prufer 序列开头的…
题面 传送门 题解 首先先把所有权值取个相反数来求最大收益,因为最小收益很奇怪 然后建图如下:\(S\to\)药,容量\(\inf+p_i\),药\(\to\)药材,容量\(\inf\),药材\(\to T\),容量\(\inf\),跑个最小割就是答案了 如果\(S\)到药的边被割了,看成不选这个药,如果药材到\(T\)的边被割了,看做选这个药材 不难发现几个性质 1.隔中间的边肯定是不优的 2.显然最少要割\(n\)条边,因为所有权值都是\(\inf\)级别的,且要求的是最小割,所以割掉的肯定…
题面 传送门 题解 答案就是\(S(n-k,k)\times {n-1\choose k-1}\) 其中\(S(n,m)\)表示左边\(n\)个点,右边\(m\)个点的完全二分图的生成树个数,它的值为\(n^{m-1}m^{n-1}\),证明可以看这里 居然没想出来-- //minamoto #include<bits/stdc++.h> #define R register #define inline __inline__ __attribute__((always_inline)) #d…
又是经典模型的好题目 题目描述 人类智慧之神 zhangzj 最近有点胖,所以要减肥,他买了 NN 种减肥药,发现每种减肥药使用了若干种药材,总共正好有 NN 种不同的药材. 经过他的人脑实验,他发现如果他吃下去了 KK(0≤K≤N0≤K≤N)种减肥药,而这 KK 种减肥药使用的药材并集大小也为 KK,这 KK 种才会有效果,否则无效.第 ii 种减肥药在产生效果的时候会使 zhangzj 的体重增加 PiPi​ 斤,显然 PiPi​ 可以小于 00. 他想知道,一次吃药最好情况下体重变化量是多…
题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部,这样我们肯定只能在左右部点之间连边,这大概算得上一个小套路吧,不过这还是萌新第一次见到这个套路呢,大佬不喜勿喷( 接下来考虑怎么求方案数,显然 \(1\) 只能放在左部点,我们还需从另外 \(n-1\) 个点中选出 \(k-1\) 个扔给左部,方案数为 \(\dbinom{n-1}{k-1}\),…
https://loj.ac/problem/6046 最近遇到几个分块题,我发现我一遇到分块题就死活构造不出来 不对,明明是,遇到数据结构题,就死活构造不出来. 所以我就找了几个分块题做做. 其实分块,树上的,很多都是先求一个dfs序,或者树剖,用一个log的代价或者没有多余的代价变成序列上的东西 树上的东西想到dfs序和树剖不是套路么…… 很多不好维护的东西,都可以用分块来做,诶这不是我以前说过的么. 这道题,如果分块,那么按照套路,块内就可以排序,我们可以二分一个答案,然后在块内二分. 算…
LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含的药材也等于$K$时才会有效果. 求最小收益,收益可能是负的.保证有完美匹配. 分析: 先把所有权值取相反数求最大收益,因为最小收益看着很难受. $S$->减肥药($inf$+收益),减肥药->药材($inf$),药材->$T$($inf$). 然后求最小割,答案就是$S$连出去的边的容量和…
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询问会给定一个长度为 \(k\) 的字符串 \(w\) 以及一对 \(L,R\), 求所有满足 \(i\in [L,R]\) 的 \(w[l_i:r_i]\) 在 \(s\) 中的出现次数之和. \(n,m,k,q\le 1\times 10^5\), \(\sum |w|\le 1\times 10…