转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9774135 本篇笔记针对ML公开课的第七个视频,主要内容包括最优间隔分类器(Optimal Margin Classifier).原始/对偶问题(Primal/Dual Problem).svm的对偶问题,都是svm(support vector machine,支持向量机)的内容.…
在之前为了寻找最有分类器,我们提出了例如以下优化问题: 在这里我们能够把约束条件改写成例如以下: 首先我们看以下的图示: 非常显然我们能够看出实线是最大间隔超平面,如果×号的是正例,圆圈的是负例.在虚线上的点和在实线上面的两个一共这三个点称作支持向量.如今我们结合KKT条件分析下这个图. 我们从式子和式子能够看出假设那么, 这个也就说明时.w处于可行域的边界上,这时才是起作用的约束. 1.那我们如今能够构造拉格朗日函数例如以下: 注意到这里仅仅有没有是由于原问题中没有等式约束,仅仅有不等式约束.…
SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后的变化SVM可能就不起作用了. SVM的思想 下面举个简单的例子.如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示.由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是-1 ,另一边所对应的y全是1. 这个…
这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的分析例如以下: 对于SVM求解的问题: 我们把约束条件略微变形一下: 仅仅有函数间隔是1的点才干使上式取等号,也就是有意义的.例如以下图: 叉叉和圈圈分别代表正反例,能够看出,仅仅有落在边缘的点的α≠0,这些点才是支持向量.其它的点α=0,对切割超平面没有意义.上图的支持向量一共同拥有3个. 写出拉…
首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5. Outliers 6. Sequential Minimal Optimization 本文转载自:http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网…
[转载请注明出处]http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念.这次斯坦福提供的学习材料,让我重新学习了一些SVM知识.我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.这份材料从前几节讲的logistic回归出发…
[转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数. 然后分别对w和求偏导,使得偏导数等于0,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变…
支持向量机基本上是最好的有监督学习算法了.看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.我们logistic回归出发,引出了SVM,既揭示了模型间的联系,也让人觉得过渡更自然. logistic回归 Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷.因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的…
一 .支持向量机(SVM) 1.1 符号定义 标签 y 不再取 0 或 1,而是: y∈{-1, 1} 定义函数: 向量,没有第 0 个维度,b 为截距,预测函数定义为: 1.2 函数间隔与几何间隔 1.2.1 函数间隔 样本个体: 全体: 1.2.2 几何间隔 样本个体: 全体:   1.2.3 关系 函数间隔与几何间隔都是对预测置信度的度量,这个间隔越大,说明预测样本离着分界线越远,我们预测的结果也就更加可靠. 1.3 优化目标 假设样本是线性可分的,优化目标为 1.4 广义拉格朗日乘数法…
虽然已经学习了神经网络和深度学习并在几个项目之中加以运用了,但在斯坦福公开课上听吴恩达老师说他(在当时)更喜欢使用SVM,而很少使用神经网络来解决问题,因此来学习一下SVM的种种. 先解释一些概念吧: 矩阵二范数: ||w|| = sqrt(w'w) 跟室友探讨了一下,觉得对于n维列向量来说,二范数的意义是它到零点的距离. 支持向量机——即最优间隔分类器: 最优间隔分类器的最终目标就是让边界与数据点之间的间隔(距离)最大,间隔的标度有两种: 1. 函数间隔 γ^(i) = y(i) * (w'x…