基于TensorFlow的车牌号识别系统】的更多相关文章

简介 过去几周我一直在涉足深度学习领域,尤其是卷积神经网络模型.最近,谷歌围绕街景多位数字识别技术发布了一篇不错的paper.该文章描述了一个用于提取街景门牌号的单个端到端神经网络系统.然后,作者阐述了基于同样的网络结构如何来突破谷歌验证码识别系统的准确率. 为了亲身体验神经网络的实现,我决定尝试设计一个可以解决类似问题的系统:车牌号自动识别系统.设计这样一个系统的原因有3点: 我应该能够参照谷歌那篇paper搭建一个同样的或者类似的网络架构:谷歌提供的那个网络架构在验证码识别上相当不错,那么讲…
MFC-FingerPrint 基于MFC开发的指纹识别系统. 效果图如下: 在第12步特征入库中,会对当前指纹的mdl数据与databases中所有的mdl进行对比,然后返回识别结果. 一.载入图像 在点击之后,选择需要识别的图片. 图片路径为beginfilename. void CFingerDlg::OnBnClickedOk1() { CFileDialog dlgFile(TRUE, NULL, NULL, OFN_HIDEREADONLY, _T("Describe Files (…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gpu加速库). 用到了一个开源的深度学习模型:VGG model. 最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!! CPU:intel i5-4590 GPU:GTX 980 系统:Win 10 OpenCV版本:3.1(这个无所谓) Caffe版本:Micros…
TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Python 的 captcha 库来生成即可,这个库默认是没有安装的,所以需要先安装这个库,另外还需要安装 pillow 库,使用 pip3 即可: pip3 install captcha pillow 安装好之后,就可以用如下代码来生成一个简单的图形验证码了: from captcha.image i…
一.需要下载的软件.环境及文件 (由于之前见识短浅,对Anaconda这个工具不了解,所以需要对安装过程做出改变:就是Python3.7.2的下载安装是可选的,因为Anaconda已经为我们解决Python运行环境,Anaconda里面的python和你自己安装的python是不冲突的,可以共存,想要区分的话,可以更改Anaconda的中python的名字为python-ana,然后就可以完美的同时存在anaconda的python和原生的python.pip 是可以通过python-ana -…
基于卷积神经网络(CNN)的人脸在线识别系统 本设计研究人脸识别技术,基于卷积神经网络构建了一套人脸在线检测识别系统,系统将由以下几个部分构成: 制作人脸数据集.CNN神经网络模型训练.人脸检测.人脸识别.经过实验,确定该系统可对本人的人脸进行快速并准确的检测与识别. 关键词: 神经网络: 图像处理: 人脸检测:人脸识别:TensorFlow:模型训练 一.设计目标 1.掌握人脸识别原理: 2.掌握卷积神经网络算法原理 3.掌握卷积神经网络模型训练过程: 4.掌握常用图像处理技术: 设计内容与要…
随着智能终端(智能手机及平板电脑)及移动通信(3G)的发展,原来运行在PC上的信息系统(如邮件系统.即时通信.网页浏览.协同办公.网络购物.社交网站.博客等)逐渐转移到智能终端设备上.可以预见未来几年60%以上的业务将会逐渐转移到智能终端系统上来.在这种背景下,杭州图铭科技有限公司推出基于Android平台的银行卡号识别系统. 功能介绍 通过拍照界面,指导用户拍出合格证件图像. 采用文字识别(OCR)技术,自动识别银行卡信息(如卡号,卡所属银行等). 通过调用 识别功能Activity,实现其他…