大数据学习——sparkSql对接hive】的更多相关文章

1.   安装mysql 2.   上传.解压.重命名 2.1.  上传 在随便一台有hadoop环境的机器上上传安装文件 su - hadoop rz –y 2.2.  解压 解压缩:apache-hive-1.0.1-bin.tar.gz tar -zxvf apache-hive-1.0.1-bin.tar.gz 2.3.  重命名 mv apache-hive-1.0.1-bin hive 3.   修改环境变量 su – root vi /etc/profile 添加内容: expor…
1上传jar 2 加载驱动包 [root@mini1 bin]#  ./spark-shell --master spark://mini1:7077 --jars mysql-connector-java-5.1.32.jar --driver-class-path mysql-connector-java-5.1.32.jar    create table dept( deptno int , dname ) , loc ) ) ; create table emp( eno int ,…
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试.本文主要讲的是如何将Hive和HBase进行整合. Hive和HBase的通信意图 Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图…
官网http://spark.apache.org/docs/1.6.2/sql-programming-guide.html val sc: SparkContext // An existing SparkContext. val sqlContext = new org.apache.spark.sql.SQLContext(sc) val df /person.json") 1.在本地创建一个文件,有三列,分别是id.name.age,用空格分隔,然后上传到hdfs上 hdfs dfs…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
1. hive的简介(具体见文档) Hive是分析处理结构化数据的工具   本质:将hive sql转化成MapReduce程序或者spark程序 Hive处理的数据一般存储在HDFS上,其分析数据底层的实现是MapReduce/spark,执行程序运行在Yarn上 其大致可以按如下图理解(具体可见HIVE文档) sql语句是对某个表进行操作,所以hive一定要创建一个表格,这个表格必须要映射到hdfs中某个具体的文件才行,而映射关系.表的结构数据以及hdfs中数据的存储结构都会在创建表时规定,…
Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用及JDBC连接 Hive主要分为以下几个部分 ⽤户接口1.包括CLI,JDBC/ODBC,WebUI元数据存储(metastore)1.默认存储在⾃带的数据库derby中,线上使⽤时⼀般换为MySQL驱动器(Driver)1.解释器.编译器.优化器.执⾏器Hadoop1.⽤MapReduce 进⾏计…