这一讲主要介绍了神经网络,基本内容之前如果学习过Andrew的Machine learning应该也都有所了解了.不过这次听完这一讲后还是有了新的一些认识. 计算图 Computational graph 之前没有体会到计算图的强大,今天听Serena讲解后,有一种豁然开朗的感觉. 总的来说,有一些很复杂的表达式,如果直接使用它对变量求导,虽然也能得到一个显式的表达,但可能会牵扯到非常复杂的展开.求导等一系列操作.如果换种方式,把这个式子里的基本运算,通过计算图的方式表示出来,用节点来表示一个基…
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y.靠这种方式可以计算出最终的loss function相对于最开始的输入的导数. 这种方法的好处是,每个神经元都是很简单的运算(比如加.减.乘.除.指数.sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘…
主题有关 这一讲主要是介绍性质的,虽然大多数概念以前听说过,但还是在他们的介绍中让我有如下一些认识,所谓温故而知新,不无道理: IMAGENET Feifei Li的团队首先爬取.标注了IMAGENET 数据集,其中包含22k个目录和14m的图片: 为了能够为研究者提供一个统一的验证平台,进而组办了IMAGENET Large Scale Visual Recognition Challege,提供了benchmark,包含1,431,167 images 和 1000个物体类别: 此前在做图像…
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y.靠这种方式可以计算出最终的loss function相对于最开始的输入的导数. 这种方法的好处是,每个神经元都是很简单的运算(比如加.减.乘.除.指数.sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 或者coursera看Andrew Ng 的机器学习课程.二者只是在某些公式表达上有细微的差距. 二. 卷积神经网络CONVNET 此部分来自 http://m.blog.csdn.net/ar…
一些ConvNets的应用 Face recognition 输入人脸,推测是谁 Video classfication Recognition 识别身体的部位, 医学图像, 星空, 标志牌, 鲸... 图像描述 Image Captioning transfer 卷积操作和信号处理的卷积操作的区别 印象中在学习数字图像处理这门课的时候,里面提到过卷积操作,当时的计算方法是,需要把卷积核作一个180度的旋转.其实在最开始听到"卷积神经网络"并开始在探究具体如何进行卷积操作的时候,我也有…
原文链接:https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/ 神经网络是更复杂版本的特征组合.实质上,神经网络会学习适合相应特征组合. 1- 剖析 “非线性问题”意味着无法使用形式为“$b + w_1x_1 + w_2x_2$”的线性模型准确预测标签.对非线性问题可以用特征组合的方法进行建模. 隐藏层 “隐藏层”表示中间值.如果构建一个多层模型,“隐藏层”每个节点…
这是个06年的老文章了,但是很多地方还是值得看一看的. 一.概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层的BP推导讲解. 二.经典BP算法 前向传播需要注意的是数据归一化,对训练数据进行归一化到 0 均值和单位方差,可以在梯度下降上改善,因为这样可以防止过早的饱,这主要还是因为早期的sigmoid和tanh作为激活函数的弊端(函数在过大或者过小的时候,梯度都很小),等现在有了RELU和batch normali…