[BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8-22/ntt.html https://www.cnblogs.com/Mychael/p/9297652.html http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#i-15…
题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有的数均不为质数 [1,m]中的质数可以线性筛出 则\(dp1[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in [0,p-1],k \in [0,m]\) \(dp2[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in […
如果是求$n$个数之和在模$m$意义下为$x$,那么做法是显然的. 但是这道题问的是$n$个数之积在模m意义下为$x$,那么做法就和上面的问题不同. 考虑如何把乘法转换成加法(求log): 题目中有一个很特殊的条件:$m$是个质数. 不妨假设$m$的原根为$g$.那么显然,我们可以用$g^x%m$构造出$[0,m)$中的所有数. 那么对于两个数$A$和$B$,我们将它变形为$g^{x_1}$和$g^{x_2}$,那么$A \times B=g^{x_1+x_2}$. 我们构造一个m-1次多项式A…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数列…
Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004…
这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$,其中前面单独出现的$x$可以理解为空树的情况. 如果$i$的范围很小,那么我们就可以用求根公式去解多项式方程23333. 然而考虑到$i$最大为$10^5$,根据阿贝尔定理,无根式解,所以不能用此方法. 我们对原先的式子做一个移项,得$F(x)-\sum_{i∈D} F^i(x)=x$. 我们构造…
题目大意:在字符集大小为$m$的情况下,有多少种构造长度为$n$的字符串$s$的方案,使得$C(s)=k$.其中$C(s)$表示字符串$s$中出现次数最多的字符的出现次数. 对$998244353$取模,$n,m≤5\times 10^4$ 如果你考虑去DP,你就lose了. 令$F(x)$表示满足$C(s)≤x$的方案数. 那么最终的答案显然为$F(k)-F(k-1)$. 这一题有一个非常优美的性质:对于每一种字符,允许的最多出现次数都是$k$. 那么,令$G_k(x)=\sum\limits…
板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为 ,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能很大 ,因此他只需要你帮助…
传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m−1]之间,mmm是一个质数,求满足全部由这个集合里的组成且长度为nnn且所有数之积与xxx在模mmm意义下相同的数列总数. 思路:对a1,a2,..,as,xa_1,a_2,..,a_s,xa1​,a2​,..,as​,x全部化成gb1,gb2,...gbs,gyg^{b_1},g^{b_2},..…