大数据计算的基石——MapReduce】的更多相关文章

MapReduce Google File System提供了大数据存储的方案,这也为后来HDFS提供了理论依据,但是在大数据存储之上的大数据计算则不得不提到MapReduce. 虽然现在通过框架的不断发展,MapReduce已经渐渐的淡出人们的视野,越来越多的框架提供了简单的SQL语法来进行大数据计算.但是,MapReduce所提供的编程模型为这一切奠定了基础,所以Google的这篇MapReduce 论文值得我们去认真的研读. 摘要 MapReduce 是一个编程模型,也是一个处理和生成超大…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着 Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,把100TB数据的排序时间从72分钟提高到了23分钟. Spark在架构上包括内核部分和…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,分钟提高到了分钟. Spark在架构上包括内核部分和4个官方子模块--Spark SQL.…
Hadoop MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.早期的MapReduce(MR)框架简单明了,JobTracker作为MR框架的集中处理点,随着分布式系统集群的规模和其工作负荷的增长,显得力不从心: 1. JobTracker 存在单点故障. 2. JobTracker 任务重,资源消耗多,当MR任务非常多的时候,会造成很大的内存开销,增加了 JobTracker fail 的风险,业界总结出旧MR框架只能支持 4000节点主机的上限. 3. 在Task…
大数据计算服务(MaxCompute,原名ODPS)是一种快速.完全托管的EB级数据仓库解决方案. 当今社会数据收集手段不断丰富,行业数据大量积累,数据规模已增长到了传统软件行业无法承载的海量数据(百TB.PB.EB)级别.MaxCompute致力于批量结构化数据的存储和计算,提供海量数据仓库的解决方案及分析建模服务. 由于单台服务器的处理能力有限,海量数据的分析需要分布式计算模型.分布式的计算模型对数据分析人员要求较高且不易维护.数据分析人员不仅需要了解业务需求,同时还需要熟悉底层分布式计算模…
​ 这次来聊聊Hadoop中使用广泛的分布式计算方案--MapReduce.MapReduce是一种编程模型,还是一个分布式计算框架. MapReduce作为一种编程模型功能强大,使用简单.运算内容不只是常见的数据运算,几乎大数据中常见的计算需求都可以通过它来实现.使用的时候仅仅需要通过实现Map和Reduce接口的方式来完成计算逻辑,其中Map的输入是一对<Key, Value>,经过计算后输出一对<Key, Value>:然后将相同Key合并,形成<Key, Value&…
大数据计算:如何仅用1.5KB内存为十亿对象计数  Big Data Counting: How To Count A Billion Distinct Objects Using Only 1.5K This is a guest post by Matt Abrams (@abramsm), from Clearspring, discussing how they are able to accurately estimate the cardinality of sets with bi…
一.前言 1.从今天开始进行流式大数据计算的实践之路,需要完成一个车辆实时热力图 2.技术选型:HBase作为数据仓库,Storm作为流式计算框架,ECharts作为热力图的展示 3.计划使用两台虚拟机来打一个小型的分布式系统,使用Ubuntu系统 二.HBase简介 1.HBase是基于HDFS(Hadoop分布式文件系统)的NoSQL数据库,采用k-v的存储方式,所以查询速度相对比较快. 2.下面画图比较HBase与传统的RDS(关系型数据库)数据库的区别 (1)RDS,经常用的比如MySQ…
可类化(Classable)是Laxcus大数据管理系统提供的一项基础功能,它能够将类转化为一串字节数组,或者逆向将字节数组转化为一个类.这项功能与JAVA提供的序列化(Serializable)非常相似,但是不同之处在于,可类化是可以由用户自己定义的,包括数据的选择.数据的样式.数据结构等一系列的规则.          这样的好处在于,我们摆脱了JAVA序列化的那种由系统硬性规定的固定格式,可以自由组织我们需要的数据,包括一些可能是私密的数据:不便在于,因为这种自由,程序员需要做些牺牲,编写…