转自深度学习知识框架,小象牛逼! 图片来自小象学院公开课,下面直接解释几条线 神经网络 线性回归 (+ 非线性激励) → 神经网络 有线性映射关系的数据,找到映射关系,非常简单,只能描述简单的映射关系 大部分关系是非线性的,所以改进方法就是加一个非线性激励,某种程度是一个 NORMALIZE,但是是非线性的,对参数有更强的描述能力 +非线性激励,描述稍微复杂的映射关系,形成神经网络 神经网络输入是 1 维信息,普通网络之间进行的是代数运算,然后经过非线性激励,形成新的神经网络 RNN 神经网络…
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…
Highway Networks 论文地址:arXiv:1505.00387 [cs.LG] (ICML 2015),全文:Training Very Deep Networks( arXiv:1507.06228 ) 基于梯度下降的算法在网络层数增加时训练越来越困难(并非是梯度消失的问题,因为batch norm解决梯度消失问题).论文受 RNN 中的 LSTM.GRU 的 gate 机制的启发,去掉每一层循环的序列输入,去掉 reset gate (不需要遗忘历史信息),仍使用 gate 控…
python爬虫实战--图片自动下载器 之前介绍了那么多基本知识[Python爬虫]入门知识(没看的赶紧去看)大家也估计手痒了.想要实际做个小东西来看看,毕竟: talk is cheap show me the code! 这个小工程的代码都在github上,感兴趣的自己去下载:https://github.com/hk029/Pickup 制作爬虫的基本步骤 顺便通过这个小例子,可以掌握一些有关制作爬虫的基本的步骤. 一般来说,制作一个爬虫需要分以下几个步骤: 分析需求(对,需求分析非常重要…
一.网络爬虫的定义 网络爬虫,即Web Spider,是一个很形象的名字. 把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛. 网络蜘蛛是通过网页的链接地址来寻找网页的. 从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址, 然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止. 如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来. 这样看来,网络爬虫就是一个爬行程序,一个抓…
1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签.最终对标签的处理如下公式所示,这很简单但对于增强策略来说又很不一般. ,两个数据对是原始数据集中的训练样本对(训练样本和其对应的标签).其中是一个服从B分布的参数, .Beta分布的概率密度函数如下图所示,其中 因此,α 是一个超参数,随着α的增大,网络的训练误差就会增加,而其泛化能力会随之增强.而当 α→∞ 时,模型就会退化成最原始的…
作为人工智能最前沿的技术之一,图深度学习被公认是人工智能认识世界实现因果推理的关键,也是深度学习未来发展的方向.但深度学习对图数据模型的支持性差一直是众多研究者难以攻克的难点,因此图深度学习在实际生产中一直难以得到普及. 不过,图深度学习的瓶颈即将被打破.华为云计划9月推出的一站式AI开发平台ModelArts多个关键新特性中,将新增图深度学习功能.ModelArt联合图引擎打造的"图神经网络",让图深度学习真正落地,加速实现普惠AI. 强大图引擎助力突破图深度学习瓶颈 尽管图深度学习…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…