mxnet笔记】的更多相关文章

参考链接: https://mxnet.apache.org/api/faq/distributed_training https://mxnet.apache.org/api/faq/gradient_compression https://blog.csdn.net/grgary/article/details/50477738 Github:https://github.com/apache/incubator-mxnet 1.按照参考链接(https://www.jianshu.com/…
市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到什么经验. 我们主要关注编程模式本身,而不是其具体实现.因此,本文并不是一篇关于深度学习库相互比较的文章.相反,我们根据它们所提供的接口,将这些函数库分为几大类,然后讨论各类形式的接口将会对深度学习编程的性能和灵活性产生什么影响.本文的讨论可能不只针对于深度学习,但我们会采用深度学习的例子来分析和优…
写在前面 mxnet代码的规范性比Caffe2要好,看起来核心代码量也小很多,但由于对dmlc其它库的依赖太强,代码的独立性并不好.依赖的第三方库包括: cub dlpack dmlc-core googletest mkldnn mshadow onnx-tensorrt openmp ps-lite tvm 如果对于这些第三方库没有足够的理解,mxnet的核心代码看起来比较费劲.因此时间原因,本篇仅解析了mxnet对外的接口include目录,并且对于严重依赖第三方库的文件没有深入探究,只能…
https://blog.csdn.net/u011765306/article/details/54562282 前言 今天因为要用到tile操作(类似np.tile,将数据沿axises进行数据扩充),结果发现mxnet中没有,而且很多操作都没实现,详细完成 度可以参看issue,还在完成中,不过这并不影响我们要用的操作,这里我们 需要实现自己的Op.当然,在官方的example/numpy-ops中已经给出部分例子.这里具体的记录一下. 自定义Op 自定义op都是去继承operator.p…
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标信息 可见目标检测比图像分类算法更复杂.图像分类算法只租要判断图像中是否存在指定目标,不需要给出目标的具体位置:而目标检测算法不仅需要判断图像中是否存在指定类别的目标,还要给出目标的具体位置 因此目标检测算法实际…
code { white-space: pre } div.sourceCode { } table.sourceCode,tr.sourceCode,td.lineNumbers,td.sourceCode { margin: 0; padding: 0; vertical-align: baseline; border: none } table.sourceCode { width: 100%; line-height: 100% } td.lineNumbers { text-align…
Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(Automatic Differentiation)工具 BLAS.cuBLAS.cuDNN等拓展包 . . 一.张量的理解 本节主要参考自文章<开发丨深度学习框架太抽象?其实不外乎这五大核心组件> . 1.张量的解读 张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进…
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet as mx from mxnet import gluon from mxnet import ndarray as nd from mxnet import autograd def transform(data, label): return data.astype('float32')/255,…
MxNet 学习笔记(1):MxNet中的NDArray http://mxnet.incubator.apache.org/api/python/symbol/symbol.html api文档 MXNet API入门 —第6篇 MXNet API入门 —第5篇 MXNet API入门 —第4篇 MXNet API入门 —第3篇 MXNet API入门 —第2篇 MXNet API入门 —第1篇 https://my.oschina.net/wujux/ [MXNet代码剖析] NNVM计算图…
前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果.ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResNet和DenseNet. WideResNet( WRN ) mot…