前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众多模块也属于美国技术的范围,但开源软件的自由度毕竟不是商业软件可比拟的. 本文是一篇入门性文章,以麻省理工学院(MIT) 18.06版本线性代数课程为例,按照学习顺序介绍PYTHON在代数运算中的基本应用. 介绍PYTHON代数计算的文章非常多,但通常都是按照模块作为划分顺序,在实际应用中仍然有较多…
集成学习 Ensemble learning 中文名叫做集成学习,它并不是一个单独的机器学习算法,而是将很多的机器学习算法结合在一起,我们把组成集成学习的算法叫做“个体学习器”.在集成学习器当中,个体学习器都相同,那么这些个体学习器可以叫做“基学习器”. 个体学习器组合在一起形成的集成学习,常常能够使得泛化性能提高,这对于“弱学习器”的提高尤为明显.弱学习器指的是比随机猜想要好一些的学习器. 在进行集成学习的时候,我们希望我们的基学习器应该是好而不同,这个思想在后面经常体现. “好”就是说,你的…
一. 哈希变量(相当于Python中的字典) 详情参看:https://www.runoob.com/ruby/ruby-hash.html 1.值得注意的 (1). 创建Hash时需注意 # 创建一个空的Hash months = Hash.new puts months print(months[1]) # 创建一个具有默认值得Hash months = Hash.new( "month" ) # 或 months = Hash.new "month" puts…
强化学习基础: 注: 在强化学习中  奖励函数和状态转移函数都是未知的,之所以有已知模型的强化学习解法是指使用采样估计的方式估计出奖励函数和状态转移函数,然后将强化学习问题转换为可以使用动态规划求解的已知模型问题. 强化学习问题由于采用了MDP数学形式来构建的,由此贝尔曼方程式是我们最常用的,如下: 基础知识可参考: https://www.cnblogs.com/devilmaycry812839668/p/10306175.html =============================…
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向量长度和点积 REVIEW OF THE KEY IDEAS 1.3 Matrices矩阵 REVIEW OF THE KEY IDEAS 1.1. Vectors and Linear Combinations向量和线性组合 emmm,想写细一点,发现下面的概括很准确了,没必要 REVIEW OF…
转自:https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.linalg.html 1.分解 //其中我觉得可以的就是svd奇异值分解吧,虽然并不知道数学原理 np.linalg.svd(a, full_matrices=1, compute_uv=1) a是要分解的(M,N)array; full_matrices : bool, optional If True (default), u and v have the shape…
用于 Python 的 MATLAB 引擎 API 快速入门 安装用于 Python 的 MATLAB 引擎 API Matlab的官方文档中介绍了 Matlab 与其余编程语言之间的引擎接口,其中包括对于 Python 开放的引擎 API,可参考官方教程,其中包括引擎安装,基本使用,以及Python与Matlab之间的数据类型转换及交互. 在 Windows 系统中:(可能需要管理员权限运行) cd "matlabroot\extern\engines\python" python…
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 ​ 强化学习算法在被引入深度神经网络后,对大量样本的需求更加明显.如果智能体在与环境的交互过程中没有获得奖励,那么该样本在基于值函数和基于策略梯度的损失中的贡献会很小. ​ 针对解决稀疏奖励问题的研究主要包括:1 Reward Shaping:奖励设计与学习 经验回放机制 探索与利用 多目标学习和辅助任务 1. Reward Shaping 人为设计的 "密…
详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为深度学习必备之神器.自 BN 之后, Layer Norm / Weight Norm / Cosine Norm 等也横空出世.本文从 Normalization 的背景讲起,用一个公式概括 Normalization 的基本思…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…