LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不容易看出 f(n,k)是关于k的2n+1次多项式. 证明可以用数学归纳法证明 且还可以从非常规律的转移中看出这应该是一个形似多项式的东西. 可以直接O(n)拉格朗日插值 不过这里懒得写因为 外面dp是\(n^2\)求点值的所以这里没必要O(n). 注意初始化. const ll MAXN=1010;…
题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出所有集合 \(S=\{a_1,a_2,\cdots,a_n\}\) 的权值之和,然后答案乘上 \(n!\). 那么怎么求这个权值之和呢?首先有一个非常 naive 的 DP,\(dp_{i,j}\) 表示 \(1\sim i\) 中选了 \(j\) 个数,可得的集合的权值之和,那么显然有 \(dp_{i,j…
题目 题目大意 平面上有一堆带权值的点.两种操作:交换两个点的权值,查找一个矩形的第\(k\)小 \(N<=60000\) \(M<=10000\) \(10000ms\) 思考历程&各种可能过的方法 先是想了一会儿,然后突然发现一个惊天大秘密:\(10000ms\)! 然后就想出个\(O(NM)\)的做法-- 将矩形内的所有点找出来,然后\(O(N)\)求第\(k\)大-- 于是爆\(0\)了.后来才发现是输出的时候漏了句号,而且给出的矩形有\(x0>x1\)或\(y0>…
题目 题目大意 给你一个有\(n\)个点的平面. 选择三个点,求两两之间曼哈顿距离和的最大值和最小值. 思考历程&正解 比赛的时候没有想太多,但感觉似乎比较水-- 首先有个很显然的性质,答案为这三个点的最大最小横坐标之差和最大最小纵坐标之差的和. 可以把它看成矩形的周长,容易发现矩形至少一个顶点是三个点之一. 后来才发现水的是求最大值,而不是求最小值. 比赛之后开始和WMY刚-- 最大值是很好求的.我一开始打了个线段树来求,后来发现根本不用-- 求出所有点的\(Xmin,Xmax,Ymin,Ym…
#2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作的有效区间是连续的,考虑找到操作x结束的时间ed[x],即执行(x,ed[x]]可以将x加入的数全部弹出,这样用一个vis记录数字次数就可以维护个数: 一种比较暴力的做法是:枚举x,用一个线段树维护还可以放多少个元素,枚举ed[x]更新,但是这样不满足单调性无法two-pointers; 考虑分块.…
题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在最后面加一堆$a_i=c_i=\infty$的石子,确保每次取石子都可以取满$k$个: 先考虑$a_i=0$的情况: 设$f_{i,j}$表示只考虑第0到$i$堆石子,通关前$j$轮的最少操作次数: 设$g_{i,j}$表示只考虑第0到$i$堆石子,前$j$轮结束后再取若干次石子,每次取$k$个,使…
Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记答案为\(S_{S,i}\),那么\(F_{S,i}\times S_{T,j}\)能够贡献到\(S_{S\&T,i+j}\). 上下两部分是两个问题,我们分开来看. 考虑第一步 设原矩阵为A 根据定义,\[F_{S,i}=\sum\limits_{x\&y=T}A^i_{x,y}\] 容易看…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][j] = f[i-1][j-1] * i * j + f[i][j-1],分别是选不选 j,选 j 的话放在哪个位置: 看不出次数...据说这是个最高次数为 2i 的多项式,感性理解... 知道了次数,就可以用拉格朗日插值算了,DP得到比较小的 2*n+1 个值,即可算出 x=A 的答案. 代码如下…
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]\).这个转移复杂度是\(O(n*A)\)的,无法通过此题.考虑优化,打个表发现这其实是一个多项式,次数可以用差分法确定,然后用拉格朗日插值即可. 代码 #include<iostream> #include<cstdio> #include<cstring>…
给定 \(n \leq 10^7\),求所有 \(n\) 的全排列的逆序对个数的 \(k \leq 100\) 次方和 Solution \(f[i][j]\) 表示 \(i\) 个元素,逆序对个数为 \(j\) 的全排列个数,则 \[ f[i][j]=\sum_{s=0}^{i-1} f[i-1][j-s] \] 设 \(g[i]\) 为 \(n=i\) 的答案,那么 \[ g[i]=\sum_{j=0}^\frac{i(i-1)}{2} f[i][j]\cdot j^k \] 暴力计算则复杂…