首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
51nod lyk与gcd
】的更多相关文章
51nod lyk与gcd
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种…
51nod 1678 lyk与gcd | 容斥原理
51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为b. 2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种操作,…
51nod1678 lyk与gcd
容斥定理所以可以用莫比乌斯函数来搞.逆向思维答案等于总和减去和他互质的.那么设f[i]=∑a[j] i|j.ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌斯函数来做容斥定理. 结果因为修改的时候只修改<sqrt(n)的一直WA...吃枣药丸... #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #include&…
51 Nod 1678 lyk与gcd
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种…
51 Nod 1678 lyk与gcd(容斥原理)
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为b. 2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2).…
1678 lyk与gcd
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为b.2:给定一个数i,求所有 gcd(i,j)=1 时的 aj 的总和. Input 第一行两个数n,Q(1<=n,Q<=100000). 接下来一行n个数表示ai(1<=ai<=10^4). 接下来Q行,每行先读入一个数A(1<=A<=2). 若A=1,表示第一种操作,紧接着两个数i和b.(1&…
[51nod]1678 lyk与gcd(莫比乌斯反演)
题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #define inline __inline__ __attribute__((always_inline)) #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>…
51NOD 1594:Gcd and Phi——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1594 参考及详细推导:http://www.cnblogs.com/rir1715/p/8584083.html 设\(cnt_i=\sum_{j=1}^n[\phi(j)==i]\),这个可以在\(O(n)\)处理出来. 我们用它把\(\phi(i)\phi(j)\)换元得: \(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\times…
【51nod】2026 Gcd and Lcm
题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们就有-- \(\prod_{i = 1}^{k}f(p_{i}^{a_{i}})\) 我们发现,对于每个质因子,gcd是取较小值,lcm取较大值 \(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + m…
【51nod】1594 Gcd and Phi
题解 跟随小迪学姐的步伐,学习一下数论 小迪学姐太巨了! 这道题的式子很好推嘛 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) [gcd(\frac{\phi(i)}{d},\frac{\phi(j)}{d}) == 1]\) \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) \sum_{t | \frac{\phi(i…