[bigdata] Spark RDD整理】的更多相关文章

1. RDD是什么RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用. 2. 为什么会产生RDD? (1)传统的MapReduce虽然具有自动容错.平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作.RDD正是解决这一缺点的抽象方法. (2)RDD是一种有容错机制的特殊集合,可以分…
参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/cn/articles/spark-core-rdd/ Spark RDD详解:http://f.dataguru.cn/thread-475874-1-1.html http://developer.51cto.com/art/201309/410276_1.htm…
aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkContext, SparkConf} /** * Created by Edward on 2016/10/27. */ object AggregateByKey { def main(args: Array[String]) { val sparkConf: SparkConf =…
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量调大.还有就是通过设置一个Rdd的分区来达到设置生成的文件的数量. 有两种方法是可以重设Rdd的分区:分别是 coalesce()方法和repartition(). 这两个方法有什么区别,看看源码就知道了: def coalesce(numPartitions: Int, shuffle: Bool…
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中.   如何创建RDD? RDD可以从普通数组创建出…
1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers…
org.apache.spark.rddRDDabstract class RDD[T] extends Serializable with Logging A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. Thi…
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 *********************************************** map(func) 返回一个新的分布式数据集,由每个原元素经过func函数转换后组成 ***********************************************filter(func)返回一个新的数据集,由经过func函数后返回值为true的原元素组成 ***…
在Spark中, RDD是有依赖关系的,这种依赖关系有两种类型 窄依赖(Narrow Dependency) 宽依赖(Wide Dependency) 以下图说明RDD的窄依赖和宽依赖 窄依赖 窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 如上面的map,filter,union属于第一类窄依赖,而join with inputs co-partitioned(对输入进行协同划分的jo…