T1 毛衣衬 将合法子集分为两个和相等的集合. 暴力枚举每个元素是否被选,放在哪种集合,复杂度$O(3^n)$.考虑$\textit{meet in the middle}$. 将全集等分分为两部分分别考虑,先$O(3^{\frac{n}{2}})$枚举前一部分的所有情况,记录两个集合的差所对应的状态,然后同样$O(3^{\frac{n}{2}})$枚举后一部分,与前一部分进行匹配即可. $\textit{meet in the middle}$真还挺神的,以后做题要多考虑. $code:$ 1…
\(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \(T1\;毛一探\) 其实这个题我本来是考场上就能AC的 不得不说这个\(meet \;in\;the\;middle\)思想真的没谁了. 我在考场上一分钟想出来如何用一个复杂度不确定的办法来搞定他 (这个复杂度最劣是\(\mathcal{O(2^{n+1})}\),但是数据比较善良,给了我75pts…
6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前言 考试的时候用一个自己感觉非常妙的思路骗了20pts,因为是双向边,所以分成两个边存,边的tot从2开始,这样可以保证没一组边的序号通过取\(xor\)可以相互转化. 然后对于每一个边记录经过次数,并且记一下经过次数为1和2的边的总数,然后对于dfs时转移的就是状压的每组边的状态,当然也可以拿Hash存…
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[尴尬\(.jpg\)] \(T1\)P3322 [SDOI2015]排序 背景 说实话,看见这题正解是dfs的那一刻,我人都傻了[流泪.jpg] 在讲这题的时候赵队@yspm 类比了线段树的思想%%%%%,在食用本篇题解时可以想一下 解题思路 最基本的一个思想:结果与操作的顺序无关,因为在更换的时候…
5.22考试总结(NOIP模拟1) 改题记录 T1 序列 题解 暴力思路很好想,分数也很好想\(QAQ\) (反正我只拿了5pts) 正解的话: 先用欧拉筛把1-n的素数筛出来 void get_Prime() { for(int i=2;i<=M;i++) { if(!b[i]) pri[++tot]=i; for(int j=1;j<=tot&&i*pri[j]<=M;j++) { b[i*pri[j]]=true; if(!(i%pri[j])) break; }…
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a_i-\frac{(j-i)\times (j-i-1)}{2}]$ 设$j<k$,对$i$来说,$k$优于$j$,当且仅当$2\times i>\frac{2\times(f_j-f_k)+k^2+k-j^2-j}{k-j}$ 斜率优化,$CDQ$分治,先按$a$排序,分治中按$id$排序满足限…
因为考试过多,所以学校的博客就暂时咕掉了,放到家里来写 不过话说,vscode的markdown编辑器还是真的很好用 先把 \(noip\) 模拟 \(23\) 的总结写了吧.. 俗话说:"连胜之后必是连败,连败之后必是连胜". 经过之前连续五场比赛的挂分,终于回来了一点点... 菜我还是... 咱也不知道当时的零分是怎么考出来的.... \(\color{green}{\huge{\text{菜}}}\) ........ 好吧...... 每次考爆炸的时候在赛后总会发现自己的题目还…
\(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是这样 倒序开题,发现 \(t3\) 的做法没有优化空间了,\(t2\) 发现了一些规律,但是卡在求拓扑序上,最后乱搞 \(t1\),本来复杂度及其不正确,但是测的在随机数据下还是很可观的 事实上最后分数比预期高多了 A. 毛一琛 考完 cyh 说才发现是曾经随机跳题跳到的USACO的题,但不幸的是当…
T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照暴力枚举的思想(就是枚举两个没有交集的子集判断其和是不是相等) 去考虑将整个集合分为两部分,在每一部分分别找任意两个集合能够凑出的和 为了好操作我们找到$1~n/2$的集合中任意两个子集的和,并将其标记,存入$map$ 并使用$vector$对应$sta$及其标记,再在$n/2+1~n$的枚举中 两…
题解 \(by\;zj\varphi\) 二分答案,考虑二分背包中的最大值是多少. 枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉. 随机化一下 \(p\),这样复杂度会有保证. Code #include<bits/stdc++.h> #define ri register signed #define p(i) ++i namespace IO{ char buf[1<<21],*p1=buf,*p2=buf; #define gc() p1==p2&&…