1.全连接层 在卷积神经网络中,在多个卷积层和池化层后,连接着1个或1个以上的全连接层,全连接层把卷积层和池化层提取出来的所有局部特征重新通过权值矩阵组装成一个完整的图,因为用到了所有的局部特征,所以叫全连接.全连接层会将输入映射到一个高维空间,以便于模型能够学习到输入之间的复杂关系. 卷积层构成了特征提取器,而全连接层构成了分类器,全连接层将特征提取得到的特征图非线性地映射成一维特征向量,该特征向量包含所有特征信息,可以转化为分类成各个类别的概率(在进行分类任务时,在输出层之后利用softma…
目录: 1.什么是depthwise separable convolution? 2.分析计算量.flops 3.参数量 4.与传统卷积比较 5.reference…
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h) x和y表示的是左上角的位置,w和h表示的是矩形框的宽和高 目标检测是分类和回归都进行的一种算法 对于位置的回归而言,使用全连接层获得结果的4个输出,使用欧式距离计算损失值 对图像物体进行卷积,对卷积后的特征图分开进行计算,一条通路计算回归,一条通路计算分类 目标检测的实际操作步骤: 第一步:下载…
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None) in…
深度学习--全连接层.高阶应用.GPU加速 MSE均方差 Cross Entropy Loss:交叉熵损失 Entropy 熵: 1948年,香农将统计物理中熵的概念,引申到信道通信的过程中,从而开创了信息论这门学科,把信息中排除了冗余后的平均信息量称为"信息熵".香农定义的"熵"又被称为香农熵或信息熵,即 其中标记概率空间中所有可能的样本,表示该样本的出现几率,是和单位选取相关的任意常数. 针对此问题,熵越大,不确定程度就越大,对于其中信息量的讨论参考知乎. ​…
Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至抛弃了全连接层,转而使用GAP,而在支持迁移学习方面,各个模型几乎都支持使用Global Average Pooling和Global Max Pooling(GMP). 然而,GAP是否真的可以取代全连接层?其背后的原理何在呢?本文来一探究竟. 一.什么是GAP? 先看看原论文的定义: In th…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
fc:1.起到分类器的作用.对前层的特征进行一个加权和,(卷积层是将数据输入映射到隐层特征空间)将特征空间通过线性变换映射到样本标记空间(也就是label) 2.1*1卷积等价于fc:跟原feature map一样大小的卷积也等价于fc 3.全连接层参数冗余,用global average pooling替代.在feature map每个channel上使用gap,然后得到channel个结果,分别对应相应的类别的confidence score,最后输入给softmax.这样做减少参数,防止过…