1. 引入 Hudi 0.6.0版本之前只支持将Hudi表同步到Hive或者兼容Hive的MetaStore中,对于云上其他使用与Hive不同SQL语法MetaStore则无法支持,为解决这个问题,近期社区对原先的同步模块hudi-hive-sync进行了抽象改造,以支持将Hudi表同步到其他类型MetaStore中,如阿里云的数据湖分析DLA(https://www.aliyun.com/product/datalakeanalytics中. 2. 抽象 将Hudi表同步至Hive MetaS…
1. 引入 开源Apache Hudi项目为Uber等大型组织提供流处理能力,每天可处理数据湖上的数十亿条记录. 随着世界各地的组织采用该技术,Apache开源数据湖项目已经日渐成熟. Apache Hudi(Hadoop Upserts Deletes and Incrementals)是一个数据湖项目,可在与Apache Hadoop兼容的云存储系统(包括Amazon S3.Aliyun OSS)上进行流数据处理. 该项目最初于2016年在Uber开发,于2017年成为开源,并于2019年1…
随着软硬件各方面条件的成熟,数据湖(Data Lake)已经越来越受到各大企业的青睐, 与传统的数仓实践不一样的是,数据湖不需要专门的“入仓”的过程,数据在哪里,我们就从哪里读取数据进行分析.这样的好处在于:一来数据可以保存在很便宜的存储上面(比如阿里云的OSS 上面), 给企业节省预算,而需要分析的时候又可以分析:另一方面,因为省去了入仓的流程,对于中小型企业来说人员投入更少,更容易上手. 今天我们就给大家介绍一下,如何基于阿里云的数据湖分析引擎: DataLake Analytics(后面简…
OLAP(On-Line Analytical Processing),是数据仓库系统的主要应用形式,帮助分析人员多角度分析数据,挖掘数据价值.本文基于QQ音乐海量大数据实时分析场景,通过QQ音乐与腾讯云EMR产品深度合作的案例解读,还原一个不一样的大数据云端解决方案. 一.背景介绍 ​ QQ音乐是腾讯音乐旗下一款领先的音乐流媒体产品,平台打造了“听.看.玩”的立体泛音乐娱乐生态圈,为累计注册数在8亿以上的用户提供多元化音乐生活体验,畅享平台上超过3000万首歌曲的海量曲库.优质服务的背后,是每…
1. 引入 大多数现代数据湖都是基于某种分布式文件系统(DFS),如HDFS或基于云的存储,如AWS S3构建的.遵循的基本原则之一是文件的"一次写入多次读取"访问模型.这对于处理海量数据非常有用,如数百GB到TB的数据. 但是在构建分析数据湖时,更新数据并不罕见.根据不同场景,这些更新频率可能是每小时一次,甚至可能是每天或每周一次.另外可能还需要在最新视图.包含所有更新的历史视图甚至仅是最新增量视图上运行分析. 通常这会导致使用用于流和批处理的多个系统,前者处理增量数据,而后者处理历…
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amazon S3)是针对结构化和非结构化数据的高性能对象存储服务,可以用来作为数据湖底层的存储服务. 然而许多用例,如从上游关系数据库执行变更数据捕获(CDC)到基于Amazon S3的数据湖,都需要在记录级别处理数据,执行诸如从数据集中插入.更新和删除单条记录的操作需要处理引擎读取所有对象(文件),进行…
@ 目录 概述 定义 发展历史 特性 使用场景 编译安装 编译环境 编译Hudi 关键概念 TimeLine(时间轴) File Layouts(文件布局) 索引 表类型 查询类型 概述 定义 Apache Hudi 官网地址 https://hudi.apache.org/ Apache Hudi 官网文档 https://hudi.apache.org/docs/overview Apache Hudi GitHub源码地址 https://github.com/apache/hudi Ap…
通过前面两篇<Request 接收参数乱码原理解析一:服务器端解码原理>和<Request 接收参数乱码原理解析二:浏览器端编码原理>,了解了服务器和浏览器编码解码的原理,接下来结合项目中遇到的具体问题,分析乱码问题的解决方法. 1.用户身份验证Cookie乱码问题 用户登录后,通常用Cookie记录身份,如把用户名记录到Cookie中,其它页面读取Cookie,对Cookie值验证,符合一定规则的话则认为是合法用户. protected void Page_Load(object…
摘要:脏数据对数据计算的正确性带来了很严重的影响.因此,我们需要探索一种方法,能够实现Spark写入Elasticsearch数据的可靠性与正确性. 概述 Spark与Elasticsearch(es)的结合,是近年来大数据解决方案很火热的一个话题.一个是出色的分布式计算引擎,另一个是出色的搜索引擎.近年来,越来越多的成熟方案落地到行业产品中,包括我们耳熟能详的Spark+ES+HBase日志分析平台. 目前,华为云数据湖探索(DLI)服务已全面支持Spark/Flink跨源访问Elastics…
为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特定受众. 只有当我们能够大规模提供分析时,这一切才有可能. 对数据湖的需求 在 NoBrokercom,出于操作目的,事务数据存储在基于 SQL 的数据库中,事件数据存储在 No-SQL 数据库中. 这些应用程序 dB 未针对分析工作负载进行调整. 此外,为了更全面地了解客户和业务,通常需要跨交易和…