首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数据分析之重要模块pandas
】的更多相关文章
数据分析01 /numpy模块
数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. numpy的数据类型(数组元素的类型) 6. numpy的索引和切片操作 7. 变形reshape 8. 级联操作 9. 广播机制 10. 常用的聚合操作 11. 常用的数学函数 12. 常用的统计函数 13. 矩阵相关 数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在…
numpy模块&pandas模块
目录 numpy模块 pandas模块 numpy模块 import pandas as pd import numpy as np df=pd.Series(np.array(['a','b'])) print(df) datas=pd.date_range('20190101',periods=6) print(datas) values=np.random.rand(6,4)*10 print(values) arr1=np.array([1,2,3]) arr2=np.array([4,…
python 数据分析工具之 numpy pandas matplotlib
作为一个网络技术人员,机器学习是一种很有必要学习的技术,在这个数据爆炸的时代更是如此. python做数据分析,最常用以下几个库 numpy pandas matplotlib 一.Numpy库 为了方便科学计算,Numpy库定义了一些属性和方法以便于对一维数据,二位数据和高维数据的处理.为了满足科学计算的需求,Numpy定义了一个多维数组对象——ndarray.Ndarray由实际数据和描述这些数据的元数据(如数据维度.数据类型)构成,ndarray一般要求所有元素类型相同. (1) Ndar…
2 数据分析之Numpy模块(1)
Numpy Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包.它是我们课程所介绍的其他高级工具的构建基础. 其部分功能如下: ndarray, 一个具有复杂广播能力的快速且节省空间的多维数组. 对于整组数据进行快速的运算,无需编写循环. 用于读写磁盘数据的工具以及用于操作内容映射文件的工具. 用于集成由C, C++等语言编写的代码的工具. Numpy本身并没有提供那么多高级的数据分析功能,理解Numpy数组以及面向数组的计算将有助于我们更加高效的使用pand…
3 数据分析之Numpy模块(2)
数组函数 通用元素级数组函数通用函数(即ufunc)是一种对ndarray中的数据执行元素级的运算.我们可以将其看做是简单的函数(接收一个或多个参数,返回一个或者多个返回值). 常用一元ufunc: 函数 说明 abs 计算整数.浮点数的绝对值. aqrt 计算各元素的平方根.相当于arr ** 0.5 square 计算各元素的平方.相当于arr ** 2 sign 计算各元素的正负号,1(正数).0(零).-1(负数) ceil 计算各元素的celling值,即大于该值的最小整数. floo…
Python模块-pandas
目录 数据读取 数据探索 数据清洗 数据清洗 类型转换 缺失值 重复值 值替换 修改表结构 新增列 删除列 删除行 修改列名 数据分组(数值变量) 数据分列(分类变量) 设置索引 排序 数据筛选/切片 多表拼接 数据聚合&分组运算 groupby aggregate filter tansformation 数据透视表 crosstab pivot/pivot_table 时间序列 时间格式转化 时间索引操作 哑编码 数据导出 数据入库 技巧 数据集概览 长宽表转换 宽表转换为长表 长表转换为宽…
【Python 数据分析】Numpy模块
Numpy模块可以高效的处理数据,提供数组支持.很多模块都依赖他,比如:pandas.scipy.matplotlib 安装Numpy 首先到网站:https://www.lfd.uci.edu/~gohlke/pythonlibs/下查找numpy+mkl 我的Python版本是3.6.1,系统是64位 所以对应下载的包为: 下载好包之后,进入到包所在目录(例如:D:\安装包\安装包~Python\numpy-1.13.3+mkl-cp36-cp36m-win_amd64.whl) 使用如下命…
[读书笔记] Python数据分析 (五) pandas入门
pandas: 基于Numpy构建的数据分析库 pandas数据结构:Series, DataFrame Series: 带有数据标签的类一维数组对象(也可看成字典) values, index 缺失数据检测:pd.isnull(), pd.notnull(), Series对象的实例方法 Series对象本身及其索引都有一个name属性,和pandas其他关键功能关系很密切 DataFrame: 表格型数据结构,列和行都有索引 获取DataFrame列:字典标记方式,或者属性方式(frame2…
python数据分析入门(一)----安装pandas
打算入坑, python数据分析 , 所以下载了 <利用python数据分析>的电子书, 影印版 , 14年出版的 , 现在有很多工具对不上号, 但是整体思想还是不变的 , 所以准备工作要做好, 第一步就是安装常用个库, https://pypi.python.org/pypi 因为墙所以这个链接下载不下来 , 知乎上翻了几篇, 发现他们都用豆瓣的pypi源 , 只需要简单的两步 第一步: cmd命令行 python -m pip install -i https://pypi.do…
万字长文,Python数据分析实战,使用Pandas进行数据分析
文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!QQ群:101677771 一.Pandas的使用 1.Pandas介绍 2.Pandas基本操作 Series的操作 创建DataFrame 常见列操作 常见行操作 DateFrame的基本操作 时间操作 3.Pandas进行数据…