POJ2186 强联通】的更多相关文章

题意:       有一群老牛,给你一些关系,a b表示牛a仰慕牛b,最后问你有多少个牛是被所有牛仰慕的. 思路:       假如这些仰慕关系不会出现环,那么当且仅当只有一只牛的出度为0的时候答案才是1,都则就是0,再假设所有的关系正好组成了一个环,那么就是说明每只牛都没其他所有牛仰慕,那么答案就是n,所以我们可以像强联通缩点之后看是否有且仅有一个出度为0的,如果有那么答案就是那个强联通分量的元素个数,否则就是0,因为同一个强联通里面的点有着相同的性质. #include<stdio.h>…
题意:       有一群老牛,他们之间有m组敬仰关系,关系可以传递,a仰慕b,b仰慕c,那么a就仰慕c,现在问被所有老牛都仰慕 的有多少? 思路:       想想,是不是一个环中的老牛的关系都是一样的,就是只要有一只牛仰慕了环里面的任何一只牛,那么这个环里的所有牛都将被这只牛仰慕,那好,我们进行强联通缩点,然后出度为0的那个连通快就是被所有牛都仰慕的.前提是出度为0的连通快只能有一个才行,否则就输出0. #include<stack> #include<stdio.h> #in…
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对原图进行深度优先遍历,记录每个顶点的离开时间. :选择具有最晚离开时间的顶点,对反向图进行深度优先遍历,并标记能够遍历到的顶点,这些顶点构成一个强连通分量. ,否则算法结束. 在dfs(bfs)中,一个结点的开始访问时间指的是遍历时首次遇到该结点的时间,而该结点的结束访问时间则指的是将其所有邻接结点…
题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1的都当作1,那么a矩阵可表示一个有向图的走一次的连通性,则a^k表示有向图走K次的连通性.既然要求最后都没0,即走了K次后,每个点都能互通,这也说明这个图必然是只有一个强联通分量.于是判断k的存在有无,也就是判断a矩阵表示的有向图是不是只有一个强联通分量.…
t个样例    (注意清零) n个点m条边 有向; 任意2点是否能从a->b或者b->a; Yes  No #include<stdio.h> #include<algorithm> #include<string.h> #include<queue> #include<math.h> #include<stack> using namespace std; #define MAXN 20000 #define MAXN1…
题意: 一张无向图,求点集使其中任意两点可到达. SOL: 强联通分量中的点要么不选要么全都选,然后缩点DAG+DP 记录一下思路,不想写了...代码满天飞.…
题意: 怎么说呢...这种题目有点概括不来....还是到原题面上看好了... SOL: 求出强联通分量然后根据分量重构图,如果只有一个点没有出边那么就输出这个点中点的数目. 对就是这样. 哦还有论边双与强联通的tarjan的不同...边双要记录边...无向图的边有两条要判断是不是一条...还有什么不同呢...我也不造了...看起来很像很好写就对了... Code: /*================================================================…
题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象).当有人从别人口中得知自己的生日时,游戏结束.请问该游戏一共可以进行几轮? 输入输出格式 输入格式: 输入共2行. 第1行包含1个正整数n表示…
题目链接:http://poj.org/problem?id=1236 题目大意:N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输.问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件.问题2:至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件. 解题思路:首先用tarjan求得所有强联通分量,将每个强联通分量看成一个点,这样会得到一个有向无环图DAG, 那么…
题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认为b牛“受欢迎”, b牛认为c牛“受欢迎”, 那么a牛也认为c牛“受欢迎”. 现在想知道有多少头牛受除他本身外其他所有牛的欢迎? 解题思路:如果有两头或者多头牛受除他本身外其他所有牛的欢迎, 那么在这两头或者多头牛之中, 任意一头牛也受两头或者多头牛中别的牛的欢迎, 即这两头或者多头牛同属于一个强联…