目录 SVD专题1 算子的奇异值分解--矩阵形式的推导 前言 Preface 几点说明 预备知识 Prerequisite 1.1 极分解 Polar Decomposition 1.2 等距同构 Unitary Operator 1.2.1 什么是等距同构 1.2.2 等距同构的刻画 重要补充:正规算子与复谱定理 1.2.3 等距同构的描述 1.3 正算子 Positive Operator 1.3.1 什么是正算子 1.3.2 正算子的刻画 补:算子的平方根 1.3.3 正算子的描述 奇异值…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
注:奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助. 1.特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵\(A\)是一个\(m\times m\)的实对称矩阵(即\(A = A^T\)),那么它可以被分解成如下的形式 \[ A = Q\Sigma Q^T= Q\left[ \begin{matrix} \lambda_1 & \cdots & \cdots &…
SVD简介 SVD不仅是一个数学问题,在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing)或隐性语义分析(Latent Semantic Analysis).另外在工程应用中的很多地方都有它的身影,例如在推荐系统方面.在2006年末,电影公司Netflix曾经举办一个奖金为100万刀乐的大赛,这笔奖金会颁给比当时最好系统还…
一.奇异值分解简介 奇异值分解简称SVD(singular value decomposition),可以理解为:将一个比较复杂的矩阵用更小更简单的三个子矩阵的相乘来表示,这三个小矩阵描述了大矩阵重要的特性.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.数据降维.信号处理与统计等.        任何矩阵都可以使用SVD进行分解,对于一个MxN(M>=N)的矩阵M,存在以下的SVD分解: ∑是一个对角矩阵,其中的元素值就是奇异值,并且按照从大到小的顺序排列.        在很多情…
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀疏矩阵运算的运算速度. whitening whiten的目的是解除特征向量中各个特征之间的相关性,同时保证保证每个特征的方差一致,是数据集归一化的一种形式.设特征向量 X = (X1,X2,X2),未知的量是随机变量,因此X1 X2 X3 都是随机变量,他们都服从某个分布,有确定的期望.注意到wh…
原文链接:http://www.cnblogs.com/appler/archive/2012/02/02/2335886.html 原始英文链接:http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html 潜语义分析LSA介绍 Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI) literally mean…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特征之间还要保持线性无关,这样的方法称为主成分分析(Principal component analysis,PCA),新数据的特征称为主成分,得到主成分的方法有两种:直接对协方差矩阵进行特征值分解和对数据矩阵进行奇异值分解(SVD). 一.主成分分析基本思想   数据X由n个特征降维到k个特征,这k…