针对dataframe中的某一行(或列)想做批量字符串处理时,可采用此方法 series.str.python内置的str方法 例如: series.str.replace('A','B')   # 整个series中所有字符串全部执行替换操作 python内置str方法汇总: https://www.cnblogs.com/P--K/p/8443995.html…
字符串str ' ' 字符串+ 都是字符串的时候才能相加 a = 'alex' b = 'wusir' print(a+b) #字符串拼接 字符串* 字符串和数字相乘 a = 6 b = 'alex' print(a*b) #字符串和数字相乘 字符串是不可变的数据类型 字符串---用于存储数据,---比较少 用引号引起来的都是字符串 1.字符:单一的文字符号 2.字符串:有序的字符序列 '张三李四' 3.索引:索引的下标从0开始,使用[]来获取数据 0 1 2 s = '刘德华' s[0] #第…
原创博文,转载请注明出处! 本文代码的github地址       series中的元素均为字符串时,通过str.split可将字符串按指定的分隔符拆分成若干列的形式. 例子: 拆分以逗号为分隔符的字符串 # -*- coding: utf-8 -*- # 创建dataframe import pandas as pd s = pd.DataFrame(['a,b,c','c,d,e']) print(s) """ 0 0 a,b,c 1 c,d,e ""…
pandas是基于numpy的数据分析模块,提供了大量标准模型和高效操作大型数据集所需要的工具. pandas主要提供了3种数据结构:1.Series,带标签的一维数组:2.DataFrame,带标签且大小可变的二维表格结构:3.Panel,带标签且大小可变的三维数组. 使用:用pig工具下载和安装pandas 导入:import pandas as pd 1.生成一维数组 import numpy as np x = pd.Series([1, 3,  5, np.nan]) 2.生成二维数组…
由于在机器学习中经常以矩阵的方式来表现数据,那么我们就需要一种数据结构来存储和处理矩阵.pandas库就是这样一个工具. 本文档是一个学习笔记,记录一些常用的命令,原文:http://www.cnblogs.com/skying555/p/5914391.html 也可以在https://github.com/maobuji/PythonStudy/blob/master/src/pandas_example/pandas.ipynb下载样例代码…
Pandas是基于NumPy的一种数据分析工具,提供了大量使我们快速便捷处理数据的函数和方法. 中文官网地址:https://www.pypandas.cn Pandas基于两种数据类型:Series数组与DataFrame数据表. Series对象(带索引index的一维数组) import pandas as pd from pandas import Series,DataFrame import numpy as np #创建Series数组 list1 = [1,2,3,4] sel…
数据科学--pandas库 pandas中有两个主要的数据结构,一个是Series,另一个是DataFrame.通过这两类数据,可以下载数据.可视化数据.和分析数据. Pandas安装:pip install pandas import numpy as np import pandas as pd a = np.array([1,5,3,4,10,0,9]) b = pd.Series([1,5,3,4,10,0,9]) print(a) print(b) [ 1 5 3 4 10 0 9]…
绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实上,由于Python库种类很多,要跟上其发展速度非常困难.因此,本文介绍了24种涵盖端到端数据科学生命周期的Python库. 文中提及了用于数据清理.数据操作.可视化.构建模型甚至模型部署(以及其他用途)的库.这是一个相当全面的列表,有助于你使用Python开启数据科学之旅. 用于不同数据科学任务的…
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程.pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块.入门介绍pandas适合于许多不同类型的数据…
Python之所以能够成为流行的数据分析语言,有一部分原因在于其简洁易用的字符串处理能力. Python的字符串对象封装了很多开箱即用的内置方法,处理单个字符串时十分方便:对于Excel.csv等表格文件中整列的批量字符串操作,pandas库也提供了简洁高效的处理函数,几乎与内置字符串函数一一对应.也就是说: 单个字符串处理,用Python内置的字符串方法: 表格整列的字符串处理,用pandas库中的字符串函数: 本文就以常用的数据处理需求,来对比使用以上两种方式的异同,从而加深对Python和…