1.简介 维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如:文本挖掘.分词原理.既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式.在HMM中,维特比算法定义了两个局部状态用于递推. 第一个局部状态是在时刻i隐藏状态为i所有可能的状态转移路径i1,i2.......it中的最大概率 第二个局部状态由第一个局部状态递推得到. 2.算法详解 (1)从点S出发,对于第一个状态X1的各个节点,不妨假定有n1个,计算出S到它们的距离d(S,X1i),其…
先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是我们要通过找到局部状态递推的公式,这样一步步的从子问题的最优解拓展到整个问题的最优解.在这里我们认为随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,同时任何时刻的观察状态只仅仅依赖于当前时刻的隐藏状态. 在t时刻我们定义观察状态的概率为: αt(i)=P(o1,o2,...ot,i…
1. 前言维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列. 也就是说给定了HMM的模型参数和一个观测序列,计算一系列的隐状态,使得此观察序列的出现可能最大,即最大化P(隐状态 | 观测序列),给定观测序列,求最可能的对应的隐状态序列. 实际上解决此问题,在<统计学习方法>中给出了两种解法,一个是近似算法,另一个就是维特比算法(Viterbi algorithm) 2.…
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(Vitebi Algorthim). 维特比算法在隐马尔科夫模型的预测算法中已经详细介绍和Python实现过,详见以前的博客: [机器学习][隐马尔可夫模型-4]维特比算法:算法详解+示例讲解+Python实现 2.CRF的预测算法之维特比算法2.1维特比算法简介维特比算法实际使用动态规划解CRF条件…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列 在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列.在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型. HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题.同时维特比算法是一个通用的求…
前言 维特比算法是隐马尔科夫问题的一个基本问题算法.维特比算法解决的问题是已知观察序列,求最可能的标注序列. 什么是维特比算法? 维特比算法尽管是基于严格的数学模型的算法,但是维特比算法毕竟是算法,因此可以感性地去理解.关于感性的认识,知乎上有维特比算法的感性认识讲解,讲的非常好,也非常仔细.在这里,我阐述一下自己的理解,如果有没有讲明白的地方,可以参考知乎上的讲解. 比如说我们知道一个人有三个精神状态,比如说正常.冷.头晕.并且我们知道身体状态转换概率 状态|健康|发烧 -|-|- 健康|0.…
一.前言:词性标注 二.经典维特比算法(Viterbi) 三.算法实现 四.完整代码 五.效果演示: 六.总结 一.前言:词性标注 词性标注(Part-Of-Speech tagging, POS tagging),是语料库语言学中将语料库中单词的词性按其含义和上下文内容进行标记的文本数据处理技术.词性标注可以由人工或特定算法完成,使用机器学习(machine learning)方法实现词性标注是自然语言处理(NLP)的研究内容.常见的词性标注算法包括隐马尔可夫模型(Hidden Markov…
使用 CJSON 在C语言中进行 JSON 的创建和解析的实例讲解   本文用代码简单介绍cjson的使用方法,1)创建json,从json中获取数据.2)创建json数组和解析json数组 1. 创建json,从json中获取数据 1 #include <stdio.h> 2 #include "cJSON.h" 3 4 char * makeJson() 5 { 6 cJSON * pJsonRoot = NULL; 7 8 pJsonRoot = cJSON_Crea…
维特比算法(Viterbi) 维特比算法 编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路径”和“维特比算法”也被用于寻找观察结果最有可能解释相关的动态规划算法.例如在统计句法分析中动态规划算法可以被用于发现最可能的上下文无关的派生(解析)的字符串,有时被称为“维特比分析”.   中文名 维特比算法 外文名 Viterbi Algorithm 提出时间 1967年 提出者 安德鲁·维特比…
之前我们介绍过BERT+CRF来进行命名实体识别,并对其中的BERT和CRF的概念和作用做了相关的介绍,然对于CRF中的最优的标签序列的计算原理,我们只提到了维特比算法,并没有做进一步的解释,本文将对维特比算法做一个通俗的讲解,以便大家更好的理解CRF为什么能够得到最优的标签序列. 通过阅读本文你将能回答如下问题: 什么是维特比算法? 为什么说维特比算法是一种动态规划算法? 维特比算法具体怎么实现? 首先,让我们简单回顾一下BERT和CRF在命名实体识别中各自的作用: 命名实体识别中,BERT负…