马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distribution/equilibrium distribution(目标分布),最后选用逼近后的样本作为最终的采样.那么为什么要用MCMC呢,在什么情况下使用呢,这里给出一些个人的学习心 得. 1. 什么情况下用? 很多书籍或论文给出的情况是,目标分布难以被直接估计的情况下使用,那么具 体是什么情况呢?举…
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn’t have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th…
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对目标分布 \(p\) 进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) 马尔科夫链(Markov chains) 学习目标 知道基本的问题设定: 即你希望从一个难以处理的分布中采样近似样…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均匀分布的采样.如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样.拒绝采样以及自适应的拒绝采样等等. 涉及到 "逆变换" [Bayes] runif: Inversion Sampling 例如:U1, U2是均匀分布,可得到两个高斯分布的变量X,…
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it use…
准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (MCMC) 文章下给出的链接. Monte Carlo Approximations Monte Carlo Approximation for Integration 理论部分 本文主要参考 Monte Carlo Approximations 蒙特卡洛方法是用来近似计算积分的,通过数值方法也可以计…
History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Carlo methods at Microsoft Research. These tutorials are seminar-talk length (45 minutes) but are supposed to be light, accessible to a general computer…
Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代中期,为适应当时的曼哈顿计划需求而在美国Los Alamos实验室发展起来的,说白了就是美国为了造原子弹才逼出来的.Monte Carlo方法与一般的计算方法有很大的区别,一般计算方法对解决多维或因素复杂的问题非常困难,而Monte Carlo方法对解决这类问题却比较简单,因此Monte Carlo…
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法. 一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的.而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少…